LOOP ALGORITHMS FOR DUCTILITY ANALYSIS OF COLUMN REINFORCED STEEL WITH YIELD STRENGTH ABOVE 500 MPA

¹AHMAD FAZA AZMI

¹East Java Regional Residential Infrastructure Center, Directorate General Of Copyright Works, Minister for Public Works and Human Settlements

e-mail: <u>lfaza.azmi@pu.go.id</u>

ABSTRACT

There are many benefits to the use of high-strength reinforcement (above 500 MPa) in reinforced concrete buildings. The advantages of using high-strength reinforcement are reduction steel volume and dimension, reduced construction time, reduction in reinforcement congestion, as well as savings in materials and worker cost. Meanwhile, the investigation of ductility of reinforced concrete element with high-strength reinforcement to resist earthquake effects under current design procedure is needed. In the current standard, ACI 318-71, The maximum specified yield strength was restricted to 60 Ksi (413 MPa) for reinforcement in special seismic system. There were also no ASTM standard specifications for reinforcement with yield strength factor is of important consideration in order to avoid brittle failure. This paper attempts to anaylze the ductility and re-evaluate the flexural overstrength factor of reinforced concrete column. The tensile tests of steel reinforcement with yield strength above 500 MPa agenerates stress-strain curve. An idealisations for the monotonic stress-strain curve proposed by mander was adopted in this study. Whereas in this numerical study of confined concrete columns, the behavior of concrete cored is modeled by the stress-strain relationship of confined concrete proposed by Kappos-Konstantinidis. This stress strain model was used for the momen, curvature, ductility, and flexural overstrength factor analysis.

Keywords: Column, Steel, Ductility, Flexural, Overstrengthfactor

1. INTRODUCTION

There are many potential advantages to the use of high-strength reinforcement (above 500 MPa) in reinforced concrete structures. There are reduction steel volume, reduced construction time, reduction in reinforcement congestion, as well as savings in material and worker cost. Meanwhile, the investigation of ductility of reinforced concrete element with high-strength reinforcement to resist earthquake effects under current design procedure is needed. In the current standard, ACI 318-71, The maximum specified yield strength was restricted to 60 Ksi (413 MPa) for reinforcement in special seismic system. There were also no ASTM standard specifications for reinforcement with yield strength above 500 MPa.

This paper attempts to analyse the ductility and re-evaluate the flexural overstrength factor of reinforced conrete column. The stress-strain model proposed by mander has six key parameters. The six key parameters, which are used to form the stress-strain curve, are obtained from the tensile tests, there are $f_y, \epsilon_y, E_s, f_s, \epsilon_s, E_s$. The number of the samples tested is 78 specimen and the mean value of the six key parameters are listed in Table 2.

2. STEEL REINFORCEMENT MODELS

Previous investigations have shown that the plastic hinge behavior of reinforced concrete members is determined by the stress strain curve of the reinforcing steel (Park, 1977). The tensile tests are necessary to determine the stress strain characteristic of the reinforcing steel. The tensile tests generate stress-strain curve of the steel bars with yield strength above 500 MPa. The stress-strain curve of the steel bars, obtained from tensile tests, approach the stressstrain curve proposed by mander. Based on the stress-strain properties of reinforcing steel, theoretical curvature ductilty, and overstrength factor analyses are carried out for reinforced concrete column.

Curvature ductility and flexural overstrength factor analysis was calculated using numerical analysis by using loop algorithms.

Numerical analysis can be used to simulate the behavior of reinforced concrete columns by entering the strain values into the given formula (function) so as to produce stress and internal forces values in the reinforced concrete column.

For this numerical analysis to be performed, a function (formula) which represents the relationship betweeen stress and strain (steel and concrete) in a reinforced concrete element is required. While on the steel tensile test, it only produces stress-strain curve of steel without the function (formula) that forms the stress-strain curve of the steel bars.

Due to the above problems, this study adopts the stress-strain curve of the steel bars proposed by Mander so that the strain value can be entered into numerical analysis by computer program (VBA Macro Excel) so that the value of stress and internal forces in the reinforced concrete column can be obtained. Furthermore, the stress-strain curve of the steel bars proposed by Mander is considered to represent the stress-strain curve of tensile test results.

The stress-strain curve of the steel bars, proposed by Mander, is calculated using the following equation.

a. Linear Elastic $(0 \le \varepsilon_s \le \varepsilon_y)$

$$f_s = E_t \varepsilon_s \tag{1}$$

$$E_t = E_s \tag{2}$$

$$\varepsilon_y = f_s / E_s \tag{3}$$

 E_t = tangen modulus

 E_s = modulus of elasticity of the steel (Young's modulus)

b. Yield Plateau
$$(\varepsilon_y < \varepsilon_s \le \varepsilon_{sh})$$

 $f_s = f_y, E_t = 0$ (4)

c. Strain Hardening
$$(\varepsilon_{sh} < \varepsilon_s \le \varepsilon_{su})$$

Strain that occurs is followed by the increased value of f_s exceed f_y and continue until the ultimate strain (ε_{su}) is reached. At point D maximum stress is reached. The expression for the strain hardening area is in the form of a power curve, with the ultimate stress-strain coordinate as origin, as follows :

$$\begin{bmatrix} \frac{f_{su} - f_s}{f_{su} - f_y} \end{bmatrix} = \begin{bmatrix} \frac{\varepsilon_{su} - \varepsilon_s}{\varepsilon_{su} - \varepsilon_{sh}} \end{bmatrix}^P$$
(5)
$$f_s = f_{su} + \left(f_y - f_{su} \right) \frac{\varepsilon_{su} - \varepsilon_s}{\varepsilon_{su} - \varepsilon_{sh}} \Big|^P$$
(6)

Where P is the strain hardening power and can be determined by differentiating Equation 6 to give the tangent modulus :

$$E_{t} = \frac{df_{s}}{d\varepsilon_{s}} = P \left[\frac{f_{su} - f_{y}}{\varepsilon_{su} - \varepsilon_{sh}} \right] \frac{\varepsilon_{su} - \varepsilon_{s}}{\varepsilon_{su} - \varepsilon_{sh}} \Big|^{P-1}$$
(7)

Since the strain hardening modulus (E_{sh}) occurs when $\varepsilon_s = \varepsilon_{sh}$, therefore :

$$E_{t} = E_{sh} = P \left[\frac{f_{su} - f_{y}}{\varepsilon_{su} - \varepsilon_{sh}} \right] \text{ atau}$$
(8)
$$P = E_{sh} \left[\frac{\varepsilon_{su} - \varepsilon_{sh}}{f_{su} - f_{y}} \right]$$
(9)

Stress at yield point (point B in figure 1) is considered as yield strength, and used as parameter in elastic design of steel reinforcement. The modulus of elasticity average values (Es) is deternined by the slope of the linear static. Which is generally determined as 200 GPa, however, from the tensile tests, the modulus of elasticity average values is 212288 MPa.

The comparison stress-strain value that is obtained from tensile tests and The stress-strain value that is obtained from mander formula is shown in Table 1.

Figure 1. Stress-strain curve of steel (Mander et al, 1984)

The stress-strain value of the reinforcing steel proposed by Mander is shown in Table 1. It can be obtained from the mean values of stress and strain of reinforcing steel at yield, initial strain hardening, and ultimate strain hardening which are shown in Table 2 (Result and Discussion section), by inputting the value of strain into equation (1) to equation (9). Then the strain value is increased by certain increment.

The stress-strain value of the reinfrocing steel obtained from tensile test results also shown in Table 1. It is obtained from the mean values of stress-strain test specimen.

In Figure 2, the stress-strain curve shows an explicitly upper yield strenght point. The upper yield strength value, from tensile tests, as shown in Table 1, is 526.87 MPa. The relative magnitude of the upper yield point depends on the speed of testing, the shape of the section and the form of the specimen (Park and Paulay, 1975).

<i>ie</i> 1.	Siless sile	un of sie	ei from i	ine iensi	ie iesi (1
	Condition	Mar	nder	Tensil	e Test
	Condition	Strain Stress		Strain	Stress
	Yield	0.002441	518.1224	0.002441	518.1224
		0.005383	518.1224	0.005383	526.8793
Vie	d Distance	0.008325	518.1224	0.008325	528.1957
TIE	elu Plateau	0.011267	518.1224	0.011267	528.6989
		0.014209	518.1224	0.014209	529.3922
		0.017151	518.1224	0.017151	530.5282
		0.029513	549.6992	0.029513	570.127
		0.041874	577.5556	0.041874	598.9098
		0.054235	601.7469	0.054235	621.9042
Ctroi	in hardoning	0.066597	622.3352	0.066597	640.6962
Sud	in naruening	0.078958	639.3906	0.078958	653.4712
		0.09132	652.9946	0.09132	662.4942
		0.103681	663.2444	0.103681	668.877
		0.116042	670.2621	0.116042	672.487
		0.128404	674.2146	0.128404	674.384
	Ultimate	0.140765	675.3878	0.140765	675.3878

Table 1. Stress strain of steel from the tensile test (MPa)

The yield plateau length (B-C in Figure 1) is generally function of the strength of the steel. From monotonic tension tests, the stress value at yield plateau region is between 526,87 to 530,52 MPa whereas the stress value obtained from mander formula clasically treated as flat and with zero tangent modulus as shown in Figure 2, the stress obtained from mander formula remains constant while the strain continues to increase. It caused the difference value of stress between stress-strain curve proposed by mander with stress-strain curve obtained from monotonic tension test although not significant. The ultimate stress occurs at Point D in Figure 1. This point is assumed as the ultimate strain rather than the fracture strain which occurs at a lower stress and higher strain. The comparison between stress- strain curve of reinforcing steel obtained from monotonic tension tests and mander formula is shown Figure 2.

Figure 2. Comparisons Stress-Strain Curve of Reinforcing Steel between monotonic tension tests and mander

3. CONFINED CONCRETE MODELS

The stress-strain model proposed by Kappos-Konstantinidis for confined concrete under monotonic compressive loading was adopted. The comparison of stress-strain model between confined concrete (Kappos-Konstantinidis) and unconfined concrete (Kent-Park) shown in Figure 3. The definiton of ultimate strain assumed at which ultimate stress occurs, rather than at fracture point which occurs at a lower stress. Confinement in addition to increasing stress and strain of concrete, also to avoid over-reinforced condition on reinforced concrete columns. It is necessary for the steel to be able to undergo large plastic strains before the concrete reaches the ultimate strain.

Figure 3. Confined and Unconfined Stress-Strain Curve of Concrete

4. MOMENT, CURVATURE, DUCTILITY AND OVERSTRENGTH FACTOR ANALYSES

The curvature of a member is defined as the rotation per unit length. The moment-curvature curve for a reinforced concrete section can be traced theoretically using the requirements of strain compatibility and equilibrium of internal forces (Park and Paulay, 1975).

The analysis start from $\varepsilon cm = 0.000005$, and then loop algorithms gradually increasing the εcm value by increments of 0.000005. For each value of ecm the neutral axis depth (kd) is adjusted and the internal forces in the concrete and the steel is found. When the internal forces is found, the moment M and curvature is found.

5. RESULT AND DISCUSSION

When The stress-strain properties of reinforcing steel obtained from a monotonic tension test as used for longitudinal reinforcement shown in Table 2. There are 30 models with various reinforced concrete column properties which are used as models in this investigation. The data value for some models of the specimen to be analyzed, can be seen in Table 3.

The moment-curvature relationship is shown in Figure 4. Figure 4 exhibit a discontinuity at first yield of the tension steel and have been terminated when the steel strain reaches strain hardening ultimate (eshu is assumed as esu). Figure 4 indicate the ductility of the section is sigficantly reduced by the presence of axial load.

able 2. Steel prop	erties from	the tensil	e test (MP				
Dian	neter of Bar	s 19 mm					
	f _y	f_{sh}	f _{sh ult}				
Mean	518.1224	530.5282	675.3878				
	εγ	ε _{sh}	$\epsilon_{sh ult}$				
Mean	0.002441	0.017151	0.140765				
Total of Samples		38					
Dian	eter of Bars 22 mm						
	fy	f _{sh}	f _{sh ult}				
Mean	503.6793	514.2421	665.0723				
	εγ	ε _{sh}	$\epsilon_{sh ult}$				
Mean	0.002478	0.016764	0.136128				
Total of Samples		40					

Table 2. Steel	properties	from the	tensile test	(MPa)
----------------	------------	----------	--------------	-------

Table 3. Section properties of column models

Table 4 reveal the influence of column area on the column flexural overstrength factor and curvature ductility. Table 5 reveal the influence of transverse reinforcement spacing on the column flexural overstrength factor and curvature ductility. Table 5 reveal the influence of reinforcement ratio on the column flexural overstrength factor and curvature ductility. Table 5 show the effect of transverse bar yield strength on the column flexural overstrength factor and curvature ductility. Table 6 show the effect of concrete compression strength on the column flexural overstrength factor and curvature ductility.

 Table 4. Curvature ductility and overstrength factor of column model 1-6

No	width x dopth	D/Dn	μφ	λ0	No	width x donth	D/Dn	μφ	λ0
NU	width x depth	г/гн	mean	mean	NU	width x depth	г/гн	mean	mean
		0%	27.59774	1.205021			0%	22.61007	1.199156
		10%	20.9468	1.142588			10%	18.38696	1.152273
		20%	16.82654	1.145527		220v220 mm	20%	15.05599	1.167069
1	220v220 mm	30%	11.16828	1.252914			30%	9.83067	1.318216
1	5208520 11111	40%	8.113128	1.45598	4	5208520 11111	40%	7.939746	1.525626
		50%	7.349483	1.658709			50%	7.250162	1.727583
		60%	6.965344	1.899888			60%	6.848009	1.727583
		70%	6.743569	2.267675			70%	6.617517	2.30286
		0%	38.82601	1.239789			0%	27.98066	1.234346
		10%	25.40629	1.141497			10%	23.81144	1.153754
		20%	19.37351	1.131233	5	400x400 mm	20%	16.88271	1.143172
2	400-400	30%	11.9714	1.159874			30%	10.66488	1.178537
2	4008400 11111	40%	8.174235	1.3268			40%	7.736116	1.368689
		50%	7.242987	1.516635			50%	7.171104	1.558718
		60%	6.963187	1.743437			60%	6.866014	1.783941
		70%	6.807308	2.086627			70%	6.697082	2.122766
		0%	44.57443	1.270774			0%	38.12032	1.267146
		10%	33.17002	1.131175			10%	27.3468	1.146506
		20%	19.08353	1.108993			20%	17.5314	1.118084
2	E00vE00 mm	30%	11.57543	1.135569	6	E00vE00 mm	30%	10.82738	1.136498
3	500x500 11111	40% 7.910262		1.248385	ь	500x500 11111	40%	7.559381	1.270044
		50%	7.12519	1.423261			50%	7.099014	1.448317
		60%	6.943154	1.631732			60%	6.891836	1.659066
		70%	6.846582	1.943816			70%	6.78232	1.970891

 Table 5. Curvature ductility and overstrength factor of column model 7 - 28

		11(0	λ0			11(0)	λ0	No	longitudinal steel Ast		D/Do	μφ	λ0			11(0	λ0			110	λ0
No	P/Pn	μΨ		No	P/Pn	μψ moon		NO	(mm ²)	ρ	P/Pn	mean	mean	No	P/Pn	μΨ	moon	No	P/Pn	μΨ	maan
		mean	mean			mean	mean				0%	38.82601	1.239789			mean	mean			mean	mean
	0%	68.155	1.349		0%	26.012	1.161				20%	25.40629	1.141497		0%	29.25	1.185		0%	47.319	1.279
	10%	49.933	1.228		10%	16.198	1.083	15	1124 114040	0.0071	30%	11.9714	1.159874		10%	18.492	1.1		10%	31.318	1.172
	20%	40.183	1.217		20%	11.971	1.08	13	1134.114540	0.0071	40%	8.174235	1.3268		20%	13.924	1.096		20%	24.415	1.159
L _	30%	24.907	1.242		30%	7.6062	1.123				50%	7.242987	1.516635	~ ~	30%	8.4853	1.135		30%	15.256	1.183
1	40%	17.561	1.406	9	40%	6.7602	1.276				70%	6.807308	2.086627	21	40%	6.4889	1.293	23	40%	10.361	1.35
	50%	12.701	1.632		50%	6.4356	1.437				0%	29.64941	1.217909		50%	6.1153	1.464		50%	8.0696	1.554
	60%	9.6849	1.926		60%	6.2756	1.614				10%	23.70118	1.152181		60%	5.9204	1.66		60%	7.6903	1.803
	70%	7 4032	2 383		70%	6 1971	1 833	16	1701 172422	0.0106	30%	10.48851	1.183428		70%	5 8179	1 931		70%	7 4848	2 183
<u> </u>	0%	20 026	1 24		0%	10	1 109	10	1/01.1/2422	0.0100	40%	7.798096	1.374991		0%	20 026	1 24		0%	5/ 919	1 207
	0/6	30.020	1.24		070	19	1.100				50%	7.221359	1.570685		0/0	30.020	1.24		0/0	34.010	1.307
	10%	25.406	1.141		10%	11.196	1.045				70%	6.714223	2.141861		10%	25.406	1.141		10%	37.272	1.195
	20%	19.374	1.131		20%	7.7571	1.051				0%	27.96766	1.209665		20%	19.374	1.131		20%	29.276	1.182
8	30%	11.971	1.16	10	30%	5.2029	1.093				10%	21.94859	1.161595	22	30%	11.971	1.16	24	30%	18.487	1.203
Ť	40%	8.1742	1.327		40%	4.7337	1.23				30%	9.485997	1.218864		40%	8.1742	1.327		40%	12.482	1.368
	50%	7.243	1.517		50%	4.5157	1.367	17	2268.229896	0.0142	40%	7.781492	1.416571		50%	7.243	1.517		50%	9.0923	1.583
	60%	6.9632	1.743		60%	4.4104	1.464				50%	7.154041	1.613011		60%	6.9632	1.743		60%	7.4018	1.849
	70%	6.8073	2.087		70%	4.4781	1.617				60% 70%	6.80422	1.842079		70%	6.8073	2.087		70%	7.1083	2.258
								_										_			
		uω	λ0			uω	λ0	No	longitudinal steel Ast		D/Dn	μφ	λO			uю	λ0			uω	λ0
No	P/Pn	μφ mean	λ0 mean	No	P/Pn	μφ mean	λ0 mean	No	longitudinal steel Ast (mm ²)	ρ	P/Pn	μφ mean	λ0 mean	No	P/Pn	μφ mean	λ0 mean	No	P/Pn	μφ mean	λ0 mean
No	P/Pn	μφ mean	λ0 mean	No	P/Pn	μφ mean 18 527	λ0 mean	No	longitudinal steel Ast (mm ²)	ρ	P/Pn 0% 10%	μφ mean 27.98066 23.81144	λ0 mean 1.234346 1.153754	No	P/Pn	μφ mean 21 583	λ0 mean	No	P/Pn	μφ mean	λ0 mean
No	P/Pn 0%	μφ mean 52.836	λ0 mean 1.347	No	P/Pn 0%	μφ mean 18.527	λ0 mean 1.151	No	longitudinal steel Ast (mm ²)	ρ	P/Pn 0% 10% 20%	μφ mean 27.98066 23.81144 16.88271	λ0 mean 1.234346 1.153754 1.143172	No	P/Pn 0%	μφ mean 21.583	λ0 mean 1.177	No	P/Pn 0%	μφ mean 34.294	λ0 mean 1.277
No	P/Pn 0% 10%	μφ mean 52.836 45.725	λ0 mean 1.347 1.25	No	P/Pn 0% 10%	μφ mean 18.527 14.976	λ0 mean 1.151 1.088	No 18	(mm ²) 1520.530844	ρ 0.0095	P/Pn 0% 10% 20% 30%	μφ mean 27.98066 23.81144 16.88271 10.66488	A0 mean 1.234346 1.153754 1.143172 1.178537	No	P/Pn 0% 10%	μφ mean 21.583 17.617	λ0 mean 1.177 1.108	No	P/Pn 0% 10%	μφ mean 34.294 29.603	λ0 mean 1.277 1.189
No	P/Pn 0% 10% 20%	μφ mean 52.836 45.725 35.055	λ0 mean 1.347 1.25 1.242	No	P/Pn 0% 10% 20%	μφ mean 18.527 14.976 10.592	λ0 mean 1.151 1.088 1.089	No 18	longitudinal steel Ast (mm ²) 1520.530844	ρ 0.0095	P/Pn 0% 10% 20% 30% 40%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.171104	A0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718	No	P/Pn 0% 10% 20%	μφ mean 21.583 17.617 12.49	λ0 mean 1.177 1.108 1.106	No	P/Pn 0% 10% 20%	μφ mean 34.294 29.603 21.292	λ0 mean 1.277 1.189 1.173
No	P/Pn 0% 10% 20% 30%	μφ mean 52.836 45.725 35.055 22.361	λ0 mean 1.347 1.25 1.242 1.271	No 13	P/Pn 0% 10% 20% 30%	μφ mean 18.527 14.976 10.592 7.4269	λ0 mean 1.151 1.088 1.089 1.142	No 18	longitudinal steel Ast (mm ²) 1520.530844	ρ 0.0095	P/Pn 0% 10% 20% 30% 40% 50% 60%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.171104 6.866014	A0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718 1.558718	No 25	P/Pn 0% 10% 20% 30%	μφ mean 21.583 17.617 12.49 7.7086	λ0 mean 1.177 1.108 1.106 1.153	No 27	P/Pn 0% 10% 20% 30%	μφ mean 34.294 29.603 21.292 13.535	λ0 mean 1.277 1.189 1.173 1.203
No 11	P/Pn 0% 10% 20% 30% 40%	μφ mean 52.836 45.725 35.055 22.361 15.75	λ0 mean 1.347 1.25 1.242 1.271 1.453	No 13	P/Pn 0% 10% 20% 30% 40%	μφ mean 18.527 14.976 10.592 7.4269 6.7035	λ0 mean 1.151 1.088 1.089 1.142 1.317	No 18	longitudinal steel Ast (mm ²) 1520.530844	ρ 0.0095	P/Pn 0% 20% 30% 40% 50% 60% 70%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.171104 6.866014 6.697082	X0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718 1.558718 2.122766	N0 25	P/Pn 0% 10% 20% 30% 40%	μφ mean 21.583 17.617 12.49 7.7086 6.5412	λ0 mean 1.177 1.108 1.106 1.153 1.334	No 27	P/Pn 0% 10% 20% 30% 40%	μφ mean 34.294 29.603 21.292 13.535 9.3148	λ0 mean 1.277 1.189 1.173 1.203 1.392
No 11	P/Pn 0% 10% 20% 30% 40% 50%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678	No 13	P/Pn 0% 10% 20% 30% 40% 50%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477	No 18	longitudinal steel Ast (mm ²) 1520.530844	ρ 0.0095	P/Pn 0% 20% 30% 40% 50% 60% 70% 0%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.171104 6.866014 6.697082 26.40738 21.00245	X0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718 1.558718 2.122766 1.218033 1.165615	No 25	P/Pn 0% 10% 20% 30% 40% 50%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504	No 27	P/Pn 0% 10% 20% 30% 40% 50%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597
No 11	P/Pn 0% 10% 20% 30% 40% 50%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974	No 13	P/Pn 0% 10% 20% 30% 40% 50% 60%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642	No 18	longitudinal steel Ast (mm ²) 1520.530844	р 0.0095	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.171104 6.866014 6.697082 26.40738 21.09245 14.41464	X0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718 2.122766 1.218033 1.165615 1.145421	N0 25	P/Pn 0% 10% 20% 30% 40% 50% 60%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296 5.915	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694	No 27	P/Pn 0% 10% 20% 30% 40% 50% 60%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846
No 11	P/Pn 0% 10% 20% 30% 40% 50% 60% 70%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436	No 13	P/Pn 0% 10% 20% 30% 40% 50% 60% 70%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834	N0	longitudinal steel Ast (mm ²) 1520.530844 2280.796267	ρ 0.0095 0.0143	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.171104 6.866014 6.697082 26.40738 21.09245 14.41464 9.228261	A0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718 1.558718 2.122766 1.218033 1.165615 1.145421 1.230005	No 25	P/Pn 0% 10% 20% 30% 40% 50% 60% 70%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296 5.915 5.8028	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939	No 27	P/Pn 0% 20% 30% 40% 50% 60% 70%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226
No 11	P/Pn 0% 20% 30% 40% 50% 60% 70%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234	No 13	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422 13.821	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097	No 18	longitudinal steel Ast (mm ²) 1520.530844 2280.796267	ρ 0.0095 0.0143	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.171104 6.866014 6.697082 26.40738 21.09245 14.41464 9.228261 7.679353 2.679353	A0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718 1.558718 2.122766 1.218033 1.165615 1.145421 1.230005 1.42741 1.230005	No 25	P/Pn 0% 10% 20% 30% 40% 50% 60% 70%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296 5.915 5.8028 27.981	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939 1.234	No 27	P/Pn 0% 20% 30% 40% 50% 60% 70%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226 1.307
No 11	P/Pn 0% 20% 30% 40% 50% 60% 70% 0%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981 23.811	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234 1.154	No 13	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422 13.821 10.436	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097 1.046	No 18 19	longitudinal steel Ast (mm ²) 1520.530844 2280.796267	ρ 0.0095 0.0143	P/Pn 0% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50% 60%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.771104 6.866014 6.697082 26.40738 21.09245 14.41464 9.228261 7.679353 7.06787 6.728633	A0 mean 1.234346 1.153754 1.143172 1.368689 1.558718 1.558718 2.122766 1.218033 1.165615 1.145421 1.230005 1.42741 1.618559 1.84199	No 25	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.5412 6.1296 5.915 5.8028 27.981 23.811	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939 1.234 1.154	No 27	P/Pn 0% 20% 30% 40% 50% 60% 70% 0%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69 35.027	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226 1.307 1.215
No 11	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981 23.811 16.883	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234 1.154 1.154	No 13	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422 13.821 10.436	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097 1.046 1.052	No 18 19	longitudinal steel Ast (mm ²) 1520.530844 2280.796267	ρ 0.0095 0.0143	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 30% 40% 50% 60% 70%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.736116 7.736116 6.697082 26.40738 21.09245 14.41464 9.228261 7.679353 7.06787 6.728633 6.5242099	A0 mean 1.234346 1.153754 1.143172 1.368689 1.558718 1.558718 1.218033 1.165615 1.218033 1.165615 1.24503 1.230005 1.42741 1.618559 1.84199 2.156825	N0 25	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296 5.915 5.8028 27.981 23.811 16.883	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939 1.234 1.154 1.154	No 27	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69 35.027 25.699	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226 1.307 1.215 1.199
No 11	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981 23.811 16.883 10.665	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234 1.154 1.143 1.179	No 13	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422 13.821 10.436 7.0705 5.3328	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097 1.046 1.052 1.113	No 18 19	longitudinal steel Ast (mm ²) 1520.530844 2280.796267	ρ 0.0095 0.0143	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 30% 40% 50% 60% 70% 0% 10%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.731104 6.697082 26.40738 21.09245 14.41464 9.228261 7.679353 7.06787 6.728633 7.05787 6.528098 24.58078	A0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.358718 1.558718 1.258718 1.218033 1.165615 1.145421 1.230005 1.42741 1.618559 1.42741 1.618559 1.42149 1.84199 1.2156825	N0	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296 5.915 5.8028 27.981 23.811 16.883 10.665	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939 1.234 1.154 1.143 1.179	No 27	P/Pn 0% 10% 20% 30% 50% 60% 70% 0% 10% 20% 30%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69 35.027 25.699 16.415	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226 1.307 1.215 1.199 1.226
No 11	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981 23.811 16.883 10.665	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234 1.154 1.154 1.179 1.369	No 13 14	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422 13.821 10.436 7.0705 5.3328 4.8132	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097 1.046 1.052 1.113 1.269	No 18 19	longitudinal steel Ast (mm ²) 1520.530844 2280.796267	ρ 0.0095 0.0143	P/Pn 0% 20% 30% 40% 50% 60% 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 20% 20%	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 7.731104 6.697082 26.40738 21.09245 14.41464 9.228261 14.41464 9.228261 4.542099 24.58078 19.14955 19.14955	A0 mean 1.234346 1.153754 1.143172 1.178537 1.368689 1.558718 2.122766 1.218033 1.165615 1.145621 1.230005 1.42741 1.618559 1.84199 2.156825 1.213057 1.173988	N0 25 26	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296 5.915 5.8028 27.981 23.811 16.883 10.6683 10.667 7.7361	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939 1.234 1.154 1.154 1.179 1.269	No 27 28	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69 35.027 25.699 16.415 11.415	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226 1.307 1.215 1.199 1.226 1.411
No 11 12	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981 23.811 16.883 10.665 7.7361 7.7361	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234 1.154 1.143 1.179 1.369 1.359	No 13 14	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422 13.821 10.436 7.0705 5.3328 4.8132	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097 1.046 1.052 1.113 1.269 1.401	No 18 19 20	longitudinal steel Ast (mm ²) 1520.530844 2280.796267 3041.061689	ρ 0.0095 0.0143 0.019	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60% 40% 50% 40% 50% 40% 50% 40% 50% 40% 50% 50% 50% 50% 50% 50% 50% 5	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 6.897082 26.40738 21.09245 14.41464 9.228261 7.679353 7.06787 6.728633 6.542099 24.58078 19.14955 12.79452 8.658114 2.279452	A0 mean 1.234346 1.153754 1.143172 1.368639 1.558718 1.558718 1.558718 1.558718 1.218033 1.165615 1.218035 1.44592 1.442941 1.45425 1.213057 1.215988 1.215988 1.24399 1.279141	No 25 26	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.1296 5.915 5.8028 27.981 23.811 16.883 10.665 7.7361 7.7311	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939 1.234 1.154 1.143 1.179 1.369 1.359	No 27 28	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69 35.027 25.699 16.415 11.417 8.3169	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226 1.307 1.215 1.199 1.226 1.411 1.627
No 11	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981 23.811 16.883 10.665 7.7361 7.1711	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234 1.154 1.143 1.179 1.369 1.559	No 13 14	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.1422 13.821 10.436 7.0705 5.3328 4.8132 4.5706	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097 1.046 1.052 1.113 1.269 1.401	No 18 19 20	longitudinal steel Ast (mm ²) 1520.530844 2280.796267 3041.061689	ρ 0.0095 0.0143 0.019	P/Pn 0% 10% 20% 30% 60% 60% 70% 0% 10% 20% 30% 40% 50% 50% 50%	μφ mean 27.98066 23.81144 10.668271 10.664828 7.736116 6.897082 26.40738 21.09245 14.41464 9.228261 7.679353 7.679353 6.542099 24.58078 19.14955 12.79452 28.658114 7.659833 6.925558	A0 mean 1.234346 1.153754 1.143172 1.368689 1.368689 1.218033 1.165615 1.218033 1.145421 1.230005 1.42741 1.618559 1.84199 2.156825 1.213057 1.175988 1.24199 1.275948 1.14499 1.279141 1.473541 1.4660571	No 25 26	P/Pn 0% 10% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50% 60%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 6.5412 6.1296 5.915 5.8028 27.981 23.811 16.883 10.665 7.7361 7.1711 6.966	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.694 1.154 1.154 1.143 1.179 1.369 1.559	No 27 28	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69 35.027 25.699 16.415 11.417 8.3169 7.3200	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 2.226 1.307 1.215 1.199 1.226 1.411 1.627
No 11	P/Pn 0% 20% 30% 40% 50% 60% 70% 0% 10% 20% 30% 40% 50% 60%	μφ mean 52.836 45.725 35.055 22.361 15.75 11.624 8.7797 6.6155 27.981 23.811 16.883 10.665 7.7361 7.1711 6.865	λ0 mean 1.347 1.25 1.242 1.271 1.453 1.678 1.974 2.436 1.234 1.154 1.154 1.143 1.179 1.369 1.559 1.559	No 13 14	P/Pn 0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60%	μφ mean 18.527 14.976 10.592 7.4269 6.7035 6.3509 6.1776 6.14722 13.821 10.436 7.0705 5.3328 4.8132 4.5706 4.4591	λ0 mean 1.151 1.088 1.089 1.142 1.317 1.477 1.642 1.834 1.097 1.046 1.052 1.113 1.269 1.401 1.47	No 18 19 20	Iongitudinal steel Ast (mm ²) 1520.530844 2280.796267 3041.061689	ρ 0.0095 0.0143 0.019	P/Pn 0% 10% 20% 30% 50% 50% 50% 10% 20% 30% 40% 50% 50% 20% 30% 40% 20% 30% 20% 30% 20% 50% 50% 60% 50% 60% 50% 60% 60% 50% 60% 60% 60% 60% 60% 60% 60% 6	μφ mean 27.98066 23.81144 16.88271 10.66488 7.736116 6.697082 26.40738 21.09245 21.09245 21.09245 21.09245 21.09245 21.09245 21.09245 24.58078 6.728633 6.528078 12.79452 8.658114 7.565983 6.924859	A0 mean 1.234346 1.153754 1.143172 1.378537 1.368689 1.558718 1.558718 1.258718 1.258718 1.258718 1.165615 1.142741 1.618559 1.241057 1.2156825 1.21776825 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.2156858 1.215685858 1.215685858 1.2156858 1.2156858 1.21568	No 25 26	P/Pn 0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60% 50% 60%	μφ mean 21.583 17.617 12.49 7.7086 6.5412 5.915 5.8028 27.981 23.811 16.883 10.665 7.7361 7.1711 6.865	λ0 mean 1.177 1.108 1.106 1.153 1.334 1.504 1.694 1.939 1.234 1.154 1.154 1.143 1.179 1.369 1.559 1.784	No 27 28	P/Pn 0% 10% 20% 30% 40% 50% 60% 0% 10% 20% 30% 40% 50% 60% 50%	μφ mean 34.294 29.603 21.292 13.535 9.3148 7.9727 7.5903 7.3664 40.69 35.027 25.699 16.415 11.417 8.3169 7.3229	λ0 mean 1.277 1.189 1.173 1.203 1.392 1.597 1.846 1.307 1.215 1.307 1.215 1.199 1.226 1.411 1.627 1.842

No	P/Pn	μφ	λ0
NO	• /• ••	mean	mean
	0%	31.87612	1.206455
	10%	20.25377	1.086586
	20%	13.79796	1.073527
20	30%	8.355373	1.108279
29	40%	5.988974	1.218472
	50%	5.712133	1.356078
	60%	5.574538	1.503026
	70%	5.506238	1.69581
			-
No	P/Pn	μφ	λ0
No	P/Pn	μφ mean	λ0 mean
No	P/Pn 0%	μφ mean 26.89537	λ0 mean 1.195343
No	P/Pn 0% 10%	μφ mean 26.89537 19.0761	λ0 mean 1.195343 1.094898
No	P/Pn 0% 10% 20%	μφ mean 26.89537 19.0761 12.83532	λ0 mean 1.195343 1.094898 1.083489
No	P/Pn 0% 10% 20% 30%	μφ mean 26.89537 19.0761 12.83532 7.670564	λ0 mean 1.195343 1.094898 1.083489 1.112439
No 30	P/Pn 0% 10% 20% 30% 40%	μφ mean 26.89537 19.0761 12.83532 7.670564 6.059716	λ0 mean 1.195343 1.094898 1.083489 1.112439 1.247438
No 30	P/Pn 0% 10% 20% 30% 40% 50%	μφ mean 26.89537 19.0761 12.83532 7.670564 6.059716 5.743641	λ0 mean 1.195343 1.094898 1.083489 1.112439 1.247438 1.386436
No 30	P/Pn 0% 10% 20% 30% 40% 50% 60%	μφ mean 26.89537 19.0761 12.83532 7.670564 6.059716 5.743641 5.585848	λ0 mean 1.195343 1.094898 1.083489 1.112439 1.247438 1.386436 1.528571

 Table 6. Curvature ductility and overstrength factor of column model 29, 30

6. CONCLUSIONS

The overstrength value decreased at low levels of axial load (P/Pn 0% - 30%) but at higher axial loads (P/Pn > 30%), the ratio of Mmax (experimental flexural strengths of square columns section) to Mi (predictions based on ideal flexural strength) increased as shown by Tables 4, 5, 6, 7, and 8. The Ideal flexural strength is determined by using measured material strengths, an ultimate compression strain of 0.003. The increase in compression zone depth, kd, with axial load, and hence the greater importance of the term Cc (kd – β .kd/2) to the total flexural strength caused the increased of overstrength factor.

The relationship between axial load and The curvature ductility ($\mu\phi$) is obtained from Tables 4, 5, 6, 7, and 8. It is exhibit that the ductility of the column is significantly reduced by the presence of axial load. The flexural overstrength value for column reinforced steel with yield strength above 500 MPa is 1.04 - 2.30.

The stress-strain curve for high strength reinforcement can be determined by six variable basic parameters $(f_y, \varepsilon_y, E_s, f_{sh}, \varepsilon_{sh}, E_{sh})$.

There are six key parameters (column area, transverse reinforcement spacing, reinforcement ratio, transverse bars yield strength, concrete compression strength, and axial load) primarily influence the curvature ductility and flexural overstrength factor. The most influencing parameter is found to be the presence of axial load

REFRENCES

- [1]. ACI, 2011, Building Code Requirements for Structural Concrete and Commentary, ACI 318-11, ACI Committee 318, American Concrete Institute, Farmington Hills, Michigan.
- [2]. Andriono, T., and Park, R., (1986), "Seismic Design Considerations of the Properties of New Zealand Manufactured Steel Reinforcing Bars", Bulletin of the New Zealand National Society for Earthquake Engineering, Vol.19, No. 3, September 1986 [3] Todd, K.D. and Mays, L.W. (2005). *Groundwater Hydrology*, 3rd edition, John Wiley & Sons, Inc., New York.
- [3]. Andriono, T., (1986), Properties of Reinforcing Steel Used In Seismic Design, Report submitted in partial fulfilment of the Requirments for the Degre of Master of Engineering at the University of Canterbury
- [4]. ASTM, 2009a, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, ASTM A615-09b, ASTM International, West Conshohocken, Pennsylvania.
- [5]. ASTM, 2009a, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, ASTM A615-09b, ASTM International, West Conshohocken, Pennsylvania.
- [6]. ASTM, 2009b, Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement, ASTM A706-09b, ASTM International, West Conshohocken, Pennsylvania.
- [7]. Lim Wai Tat (1991), Statistical Analysis of Reinforcing Steel Properties, University of Canterbury Christchurch, New Zealand.
- [8]. Kent, D. C., and Park, R., Flexural Members with Confined Concrete, Journal of Structural Division, ASCE, V. 97, No. ST7, July 1971, pp. 1969-1990.

- [9]. Kappos, A. J., and Konstantinidis, D., Statistical Analysis of Confined High-Strength Concrete Columns, Material and Structures, V. 32, Dec. 1992, pp. 734-748.
- [10]. Mander, J. B., Priestley, M. J. N., and Park, R. (1984). "Seismic design of bridge piers." Research Rep. 84-02, Dept. of Civ. Engrg., University of Canterbury, Christchurch, New Zealand.
- [11]. Park. R; Paulay. T (1975), Reinforced Concrete Structures, John Wiley and Sons, New York, USA
- [12]. Park, R., "Constitutive Relations of Steel : Effect on Strength Consideration in Seismic Design", Proceedings of Workshop on Earthquake Resistant Reinforced Concrete Building Construction, Vol.II, University of California, Berkeley, July 1977, pp. 683-695
- [13]. Priestley, M.J.N; Paulay, T (1990), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, , 3rd edition.
- [14]. Standar Nasional Indonesia 03-1726-2002, Tata Cara Perencanaan KetahananGempa untuk Bangunan Gedung, Badan Standardisasi Nasional , Jakarta.
- [15]. Standar Nasional Indonesia.SNI-03-2847-2002 Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung, Standar Nasional Indonesia.
- [16]. Susanti Eka (2012), "Kemampuan Daktilitas Baja Tulangan Dengan Mutu Diatas 400 MPa Untuk Disain Struktur Tahan Gempa", Seminar Nasional Pascasarjana XII ITS, Surabaya.