Rewinding of 3 Phase Induction Motor Double Speed

Main Article Content

Linda Sartika
Abdul Muis Prasetia
Boby Setiawan
Tri Widodo

Abstract

A double-speed motor is a type of asynchronous AC motor designed with two or more windings. The presence of two separate windings causes three-phase double-speed motors to have a significantly larger physical size compared to three-phase single-speed motors of the same power rating. Numerous studies have investigated the impact of the rewinding process on the efficiency of single-speed induction motors. However, limited attention has been given to double-speed induction motors. Addressing this research gap, the present study focuses on two primary objectives: first, to analyze the impact of rewinding on the performance characteristics of double-speed induction motors; and second, to evaluate the operational performance of these motors after undergoing the rewinding process. In this study, the rewinding process utilized copper wire with a diameter of 0.50 mm, wound using a mold to create a total of 52 windings. Performance testing revealed the following results: under no-load conditions with slow rotation, the motor exhibited a current of 1.3 A, a frequency of 50.45 Hz, a power factor (cos φ) of 0.86, and a speed of 1515 RPM. When a load was applied under fast rotation, the motor demonstrated a current of 1.9 A, a frequency of 50.29 Hz, a power factor (cos φ) of 0.997, and a speed of 2949 RPM. The experimental results showed minimal variation in current and frequency between loaded and unloaded conditions, with significant differences primarily observed in rotational speed between slow and fast modes. This behavior is characteristic of double-speed motors, which are capable of operating at two distinct speeds. In fast rotation mode, the speed can reach approximately twice that of slow rotation, highlighting the design's capability to adapt to varying operational demands.

Article Details

How to Cite
Sartika, L., Prasetia, A. M., Setiawan, B., & Widodo, T. (2024). Rewinding of 3 Phase Induction Motor Double Speed. JEECS (Journal of Electrical Engineering and Computer Sciences), 9(2), 139–148. https://doi.org/10.54732/jeecs.v9i2.6
Section
Articles

References

A. S. Nugraha, I. Irwan, R. A. Duyo, and Z. B. Hasanuddin, (2022), “Analisis Penentuan Efisiensi dan Pengaruh Motor Rewinding Terhadap Kinerja untuk Mencapai Beban Nominal,” VERTEX ELEKTRO, vol. 14, no. 2, pp. 139–145, doi:10.26618/JTE.V14I2.10355.

A. M. Hussein et al., (2022), “Detection and Diagnosis of Stator and Rotor Electrical Faults for Three-Phase Induction Motor via Wavelet Energy Approach,” Electronics 2022, Vol. 11, Page 1253, vol. 11, no. 8, p. 1253, doi:10.3390/ELECTRONICS11081253. DOI: https://doi.org/10.3390/electronics11081253

K. Prabith and I. R. P. Krishna, (2020), “The numerical modeling of rotor–stator rubbing in rotating machinery: a comprehensive review,” Nonlinear Dynamics, vol. 101, no. 2, pp. 1317–1363, doi:10.1007/S11071-020-05832-Y/METRICS. DOI: https://doi.org/10.1007/s11071-020-05832-y

P. Pietrzak and M. Wolkiewicz, (2021), “On-line Detection and Classification of PMSM Stator Winding Faults Based on Stator Current Symmetrical Components Analysis and the KNN Algorithm,” Electronics 2021, Vol. 10, Page 1786, vol. 10, no. 15, p. 1786, doi:10.3390/ELECTRONICS10151786. DOI: https://doi.org/10.3390/electronics10151786

M. M. Riyanto and S. Safaruddin, (2022), “Perencanaan Lilitan Motor Induksi 3 Fasa,” JIMR : Journal Of International Multidisciplinary Research, vol. 1, no. 02, pp. 283–291, doi:10.62668/JIMR.V1I02.440. DOI: https://doi.org/10.62668/jimr.v1i02.440

A. M. Prasetia and M. N. Ramadani, (2024), “Implementation of Induction Motor Speed Control Using a PID Controller,” Fidelity : Jurnal Teknik Elektro, vol. 6, no. 1, pp. 12–20, doi:10.52005/FIDELITY.V6I1.195. DOI: https://doi.org/10.52005/fidelity.v6i1.195

A. M. Prasetia and H. Santoso, (2018), “Implementation Of Scalar Control Method For 3 Phase Induction Motor Speed Control,” Elinvo (Electronics, Informatics, and Vocational Education), vol. 3, no. 1, pp. 63–69, doi:10.21831/ELINVO.V3I1.19460. DOI: https://doi.org/10.21831/elinvo.v3i1.19460

J. Hagedorn, F. Sell-Le Blanc, and J. Fleischer, (2018), Handbook of coil winding: Technologies for efficient electrical wound products and their automated production. Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-662-54402-0

M. M. Qasim, (2019), “Design of efficient, cost effective three phase induction motors for ceiling fans in India,” Doctoral Dissertation, Massachusetts Institute of Technology.

N. Dodd, (2021), “Feasibility of alternative manufacturing processes for winding and stator components of electric machines,” Doctoral Dissertation, University of Sheffield.

T. S. Hamad, (2021), “Quality Assuring of Stator Winding Production: Using Electrical Tests to Quality Assure the Process Steps of a Series Stator Winding Production,” Stockholm Sweden.

L. Sartika, A. M. Prasetia, and I. E. N. Nicholas, (2023), “Analisa Pengaruh Perubahan Beban Terhadap Kinerja Motor Induksi 3 Fasa Scraper Conveyordi Pt. Citra Siwit Lestari,” Jurnal Elektro dan Telekomunikasi Terapan, vol. 10, no. 1, p. 7, doi:10.25124/jett.v10i1.5999. DOI: https://doi.org/10.25124/jett.v10i1.5999

J. T. Susilo, S. Dinata, J. Setiawan, and E. Santoso, (2023), “Analisa Efisiensi Motor Induksi 3 Phasa Hasil Rewinding Dengan Pemodelan Finite Element,” EPIC Journal of Electrical Power Instrumentation and Control, vol. 6, no. 1, p. 82, doi:10.32493/epic.v6i1.30752. DOI: https://doi.org/10.32493/epic.v6i1.30752

G. B. Lazarev, A. N. Novakovskii, and A. T. Sultanov, (2015), “Electromagnetic and electromechanical processes in the variable electric drive of a circulating pump with double-speed asynchronous engines,” Russian Electrical Engineering, vol. 86, no. 10, pp. 598–607, doi:10.3103/S1068371215100120/METRICS. DOI: https://doi.org/10.3103/S1068371215100120

L. Xu et al., (2020), “Analysis of Energy Saving Effect of Large Double-speed Salient Pole Synchronous Motor in Renovation of Pumping Stations,” IOP Conference Series: Earth and Environmental Science, vol. 508, no. 1, p. 012064, doi:10.1088/1755-1315/508/1/012064. DOI: https://doi.org/10.1088/1755-1315/508/1/012064

R. Restu Amanda, H. Turnip, T. Listrik, T. Elektro, and P. Negeri Medan, (2023), “Analisa Pengasutan Motor Dahlander Dengan Motor Listrik 3 Fasa Star-delta,” in Prosiding Konferensi Nasional Social & Engineering Polmed (KONSEP), vol. 4, no. 1, pp. 404–415.

D. Rismukhamedov, K. Shamsutdinov, S. Ganiev, K. Magdiev, and S. Khusanov, (2023), “New pole-changing winding for electric drive of ball mills,” E3S Web of Conferences, vol. 384, p. 01059, doi:10.1051/E3SCONF/202338401059. DOI: https://doi.org/10.1051/e3sconf/202338401059

S. Dabral, S. Basak, and C. Chakraborty, (2022), “Regenerative Braking Efficiency Enhancement using Pole-Changing Induction Motor,” IECON Proceedings (Industrial Electronics Conference), vol. 2022-October, doi:10.1109/IECON49645.2022.9968341. DOI: https://doi.org/10.1109/IECON49645.2022.9968341

V. Abhijith, M. J. Hossain, G. Lei, P. A. Sreelekha, T. P. Monichan, and S. V. Rao, (2022), “Hybrid Switched Reluctance Motors for Electric Vehicle Applications with High Torque Capability without Permanent Magnet,” Energies, vol. 15, no. 21, doi:10.3390/en15217931. DOI: https://doi.org/10.3390/en15217931

H. A. Resketi, J. A. Firouzjaee, and S. M. Mirimani, (2023), “Assessing the impact of three-phase rewinding of a failed single-phase motor on efficiency improvement and energy saving,” IET Electric Power Applications, vol. 17, no. 8, pp. 1016–1029, doi:10.1049/ELP2.12319. DOI: https://doi.org/10.1049/elp2.12319

A. S. Ogunjuyigbe, T. R. Ayodele, and J. L. Munda, (2019), “The Impact of Rewinding on the Performance Characteristics of Three Phase Induction Machine,” in 2019 IEEE Canadian Conference of Electrical and Computer Engineering, CCECE 2019. DOI: https://doi.org/10.1109/CCECE.2019.8861881