Analysis of Malang University Student Achievement Grouping Using the K-Means Clustering Method
Main Article Content
Abstract
With the increasing number of students and variations in achievement, managing achievement data in higher education has become more complex, so manual methods are insufficient. K-means clustering was chosen because of its ability to group data based on specific attributes, which makes it easier to identify patterns and trends. This research aims to prove K-Means' effectiveness in analyzing achievement data and adding to the literature regarding the application of data mining in education. The dataset includes student achievement indexes from various study programs at the University of Malang from 2018 to 2022. The data is processed to group student achievements efficiently. The clustering model was built using one of the algorithms in the clustering method, namely K-Means. This research produced the best cluster with a total of 3 clusters. The process was conducted to determine the best grouping by testing six cluster models. The best cluster was selected using the Davies Bouldin index test. Based on research with the results, these three groups can be categorized as cluster 0 in the low category with a value of 100, cluster 1 in the high category with a value of 4.100, and cluster 2 in the middle category with a value of 1.900.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
D. R. Retnowati, A. Fatchan, and K. Astina, (2016), “Prestasi Akademik dan Motivasi Berprestasi Mahasiswa Universitas Negeri Malang,” Jurnal Pendidikan, vol. 1, no. 3, pp. 521–525.
A. A. Saputro and R. Helilintar, (2020), “Perancangan Prediksi Prestasi Nilai Akademik Mahasiswa Menggunakan Metode K-Means Clustering,” in Seminar Nasional Inovasi Teknologi, pp. 49–55.
Z. Zaifullah and T. Yulianto, (2022), “Analisis Cluster Untuk Pengelompokkan Prestasi Mahasiswa Angkatan 2013 Fakultas MIPA Universitas Islam Madura,” Zeta - Math Journal, vol. 7, no. 1, pp. 1–10, doi:10.31102/zeta.2022.7.1.1-10. DOI: https://doi.org/10.31102/zeta.2022.7.1.1-10
J. Ramadhani, M. D. Nawar, and N. M. P. Aritonang, (2024), “Penilaian Pengelompokan Data Prestasi Siswa Menggunakan Metode K-Means Untuk Mengenali Siswa Berprestasi,” J-Com (Journal of Computer), vol. 4, no. 1, pp. 15–22, doi:10.33330/j-com.v4i1.2977. DOI: https://doi.org/10.33330/j-com.v4i1.2977
S. N. B. Sembiring, H. Winata, and S. Kusnasari, (2022), “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), vol. 1, no. 1, pp. 31–40, doi:10.53513/jursi.v1i1.4784. DOI: https://doi.org/10.53513/jursi.v1i1.4784
I. Vhallah, S. Sumijan, and J. Santony, (2018), “Pengelompokan Mahasiswa Potensial Drop Out Menggunakan Metode Clustering K-Means,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 2, no. 2, pp. 572–577, doi:10.29207/resti.v2i2.308. DOI: https://doi.org/10.29207/resti.v2i2.308
B. Basmalia and Z. Fatah, (2024), “Prediksi Kelulusan Siswa Menggunakan Algoritma K- Nearest Neighborgs (K-NN) Di SMK Al Hasyimy Ibrahimy,” Gudang Jurnal Multidisiplin Ilmu, vol. 2, no. 10, pp. 110–115, doi:ttps://doi.org/10.59435/gjmi.v2i11.1050.
A. Wasik, Z. Fatah, and A. Munazilin, (2024), “Implementasi data mining untuk memprediksi penjualan accessoris handphone dan handphone terlaris menggunakan metode k-nearest neighbor (k-nn) 1,” in Seminar Nasional Sains dan Teknologi “SainTek,” vol. 1, no. 2, pp. 469–479.
S. Widaningsih, (2019), “Perbandingan Metode Data Mining untuk Prediksi Nilai dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, KNN dan SVM,” Jurnal Tekno Insentif, vol. 13, no. 1, pp. 16–25, doi:10.36787/jti.v13i1.78. DOI: https://doi.org/10.36787/jti.v13i1.78
Narwati, (2010), “Pengelompokan Mahasiswa Menggunakan Algoritma K-Means,” Jurnal Dinamika Informatika, vol. 2, no. 2, pp. 1–7.
A. Yudhistira and R. Andika, (2023), “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 20–28, doi:10.58602/jaiti.v1i1.22. DOI: https://doi.org/10.58602/jaiti.v1i1.22
S. Suliman, (2021), “Implementasi Data Mining Terhadap Prestasi Belajar Mahasiswa Berdasarkan Pergaulan dan Sosial Ekonomi Dengan Algoritma K-Means Clustering,” Jurnal Sistem Informasi dan Sistem Komputer, vol. 6, no. 1, pp. 1–11, doi:10.51717/simkom.v6i1.48. DOI: https://doi.org/10.51717/simkom.v6i1.48
R. N. Sukmana, A. Mita, and A. Abdurrahman, (2019), “Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma K-Means Clustering,” Jurnal teknologi informasi dan komunikasi, vol. 8, no. 1, pp. 11–15, doi:10.58761/jurtikstmikbandung.v8i1.125. DOI: https://doi.org/10.58761/jurtikstmikbandung.v8i1.125
E. A. Saputra and Y. Nataliani, (2021), “Analisis Pengelompokan Data Nilai Siswa untuk Menentukan Siswa Berprestasi Menggunakan Metode Clustering K-Means,” Journal of Information Systems and Informatics, vol. 3, no. 3, pp. 424–439, doi:10.33557/journalisi.v3i3.164. DOI: https://doi.org/10.51519/journalisi.v3i3.164
S. Suraya, M. Sholeh, and D. Andayati, (2023), “Penerapan Metode Clustering Dengan Algoritma K-Means Pada Pengelompokan Indeks Prestasi Akademik Mahasiswa,” Skanika, vol. 6, no. 1, pp. 51–60, doi:10.36080/skanika.v6i1.2982. DOI: https://doi.org/10.36080/skanika.v6i1.2982
I. A. Kurniawan, R. M. H. Bhakti, and B. Irawan, (2024), “Implementasi Data Mining Untuk Mengukur Prestasi Siswa SD Menggunakan Metode K-Means Clustering,” JCRD: Journal of Citizen Research and Development, vol. 1, no. 2, pp. 262–268, doi:10.57235/jcrd.v1i2.3324. DOI: https://doi.org/10.57235/jcrd.v1i2.3324