Comparative Study of Obesity Levels Classification

Main Article Content

Syahrazad Syaukat Al Malaky
Alisya Akbar Choirun Nisa
Siti Armiyanti
Rizky Syahputra Setyawan

Abstract

Obesity is a growing global health problem, requiring accurate data analysis to understand and address contributing factors. The level of obesity can be identified based on eating habits and physical conditions, which consist of several parameters. However, the performance of widely used machine learning methods has not provided satisfactory results. Therefore, this study analyzes obesity data using pre-processing methods to improve data quality before classifying data. The dataset used is 2111 data and includes 17 variables/features. The classification methods are Random Forest Classifier, Light Gradient Boosting Machine (LGBM) Classifier, Decision Tree Classifier, and Extra Tree Classifier. The process of data pre-processing involves data integration, data labeling, data transformation, normalization, and data cleansing. After pre-processing the data, four algorithms were used to identify patterns in the obesity data. The Random Forest Classifier is used for its ability to handle unbalanced data and reduce the risk of overfitting. The LGBM Classifier is used for a probabilistic approach to classification. The Decision Tree Classifier is applied for straightforward interpretation and clear understanding of patterns, while the Extra Tree Classifier is applied to improve the variety and accuracy of classification. The experimental results showed that a good data pre-processing method significantly improved the performance of the classification. Among the four algorithms tested, the Random Forest Classifier and Extra Tree Classifier performed best in accuracy and generalizability. Combining appropriate data pre-processing with powerful classification algorithms can provide deep insights to address obesity problems and formulate effective public health interventions.

Article Details

How to Cite
Al Malaky, S. S., Nisa, A. A. C., Armiyanti, S., & Setyawan, R. S. (2025). Comparative Study of Obesity Levels Classification. JEECS (Journal of Electrical Engineering and Computer Sciences), 10(1), 69–75. https://doi.org/10.54732/jeecs.v10i1.8
Section
Articles

References

A. Mutia, J. Jumiyati, and K. Kusdalinah, “Pola Makan Dan Aktivitas Fisik Terhadap Kejadian Obesitas Remaja Pada Masa Pandemi Covid-19,” Journal of Nutrition College, vol. 11, no. 1, pp. 26–34, 2022, doi: 10.14710/jnc.v11i1.32070. DOI: https://doi.org/10.14710/jnc.v11i1.32070

L. N. W. Fajzrina and R. R. Diana, “Analisis Dampak Obesitas Terhadap Perkembangan Fisik Motorik Anak Usia 5 Tahun,” Ceria: Jurnal Program Studi Pendidikan Anak Usia Dini, vol. 11, no. 1, pp. 62–74, 2022, doi: 10.31000/CERIA.V11I1.6640. DOI: https://doi.org/10.31000/ceria.v11i1.6640

L. Setiyani, A. N. Indahsari, and R. Roestam, “Analisis Prediksi Level Obesitas Menggunakan Perbandingan Algoritma Machine Learning dan Deep Learning,” JTERA (Jurnal Teknologi Rekayasa), vol. 8, no. 1, pp. 139–146, 2023, doi: 10.31544/jtera.v8.i1.2022.139-146. DOI: https://doi.org/10.31544/jtera.v8.i1.2022.139-146

D. S. Saputra, Jajat, I. Damayanti, K. Sultoni, Y. Ruhayati, and N. I. Rahayu, “Prediksi BMI Berdasarkan Level Aktivitas Fisik dengan Metode Analisis Machine Learning,” Jurnal Pendidikan Kesehatan Rekreasi, vol. 10, no. 1, pp. 165–175, 2024, doi: 10.59672/jpkr.v10i1.3499. DOI: https://doi.org/10.59672/jpkr.v10i1.3499

A. M. Patel and A. Suthar, “AdaBoosted Extra Trees Classifier for Object-Based Multispectral Image Classification of Urban Fringe Area,” International Journal of Image and Graphics, vol. 22, no. 3, Dec. 2020, doi: 10.1142/S0219467821400064. DOI: https://doi.org/10.1142/S0219467821400064

R. Ahsana, R. Rohmat Saedudin, and V. P. Widartha, “Perbandingan Akurasi Algoritma Adaboost Dan Algoritma Lightgbm Untuk Klasifikasi Penyakit Diabetes,” e-Proceeding of Engineering, vol. 8, no. 5, pp. 9738–9748, 2021.

B. Shamreen Ahamed and M. Sumeet Arya, “Prediction of Type-2 Diabetes using the LGBM Classifier Methods and Techniques,” Turkish Journal of Computer and Mathematics Education, vol. 12, no. 12, pp. 223–231, 2021.

A. Dharma et al., “Deteksi Pola Pasien Kanker Serviks dengan Algoritma Extra Trees dan K-Nearest Neighbor,” JIKOMSI Jurnal Ilmu Komputer dan Sistem Informasi, vol. 3, no. 2, pp. 32–36, 2020.

G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision tree classifier for network intrusion detection with GA-based feature selection,” Proceedings of the Annual Southeast Conference, vol. 2, pp. 2136–2141, 2005, doi: 10.1145/1167253.1167288. DOI: https://doi.org/10.1145/1167253.1167288

A. Satria, R. M. Badri, and I. Safitri, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digital Transformation Technology, vol. 3, no. 2, pp. 389–398, 2023, doi: 10.47709/digitech.v3i2.2852. DOI: https://doi.org/10.47709/digitech.v3i2.2852

L. Sari, A. Romadloni, R. Lityaningrum, and H. D. Hastuti, “Implementation of LightGBM and Random Forest in Potential Customer Classification,” TIERS Information Technology Journal, vol. 4, no. 1, pp. 43–55, 2023, doi: 10.38043/tiers.v4i1.4355. DOI: https://doi.org/10.38043/tiers.v4i1.4355

T. Hidayatulloh et al., “Klasifikasi Tipe Berat Tubuh Menggunakan Metode Support Vector Machine,” vol. 18, no. 1, pp. 71–77, 2023. DOI: https://doi.org/10.33480/inti.v18i1.4254

N. Nisrina, F. Fahdhienie, and Rahmadhaniah, “Hubungan Aktivitas Fisik, Umur dan Jenis Kelamin Terhadap Obesitas Pekerja Kantor Bupati Aceh Besar,” Jurnal Promotif Preventif, vol. 6, no. 5, pp. 746–752, 2023, doi: https://doi.org/10.47650/jpp.v6i5.973.

A. Riadi and R. Sulaehani, “Analisis Implementasi Preprocessing Dengan Otsu-Gaussian Pada Pengenalan Wajah,” ILKOM Jurnal Ilmiah, vol. 11, no. 3, pp. 200–205, 2019, doi: 10.33096/ilkom.v11i3.457.200-205. DOI: https://doi.org/10.33096/ilkom.v11i3.457.200-205

H. Nhat-Duc and T. Van-Duc, “Comparison of histogram-based gradient boosting classification machine, random Forest, and deep convolutional neural network for pavement raveling severity classification,” Automation in Construction, vol. 148, p. 104767, Apr. 2023, doi: 10.1016/J.AUTCON.2023.104767. DOI: https://doi.org/10.1016/j.autcon.2023.104767

F. Hamami and I. A. Dahlan, “Klasifikasi Cuaca Provinsi Dki Jakarta Menggunakan Algoritma Random Forest Dengan Teknik Oversampling,” Jurnal Teknoinfo, vol. 16, no. 1, pp. 87–92, 2022, doi: 10.33365/jti.v16i1.1533. DOI: https://doi.org/10.33365/jti.v16i1.1533

A. Hussain and A. Aslam, “Cardiovascular Disease Prediction Using Risk Factors: A Comparative Performance Analysis of Machine Learning Models,” Journal on Artificial Intelligence, vol. 6, no. 1, pp. 129–152, 2024, doi: 10.32604/jai.2024.050277. DOI: https://doi.org/10.32604/jai.2024.050277

R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-Bisnis : Jurnal Ilmiah Ekonomi dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247. DOI: https://doi.org/10.51903/e-bisnis.v13i2.247

M. A. P. Sri, A. Wahyono, and M. A. Aziz, “Deteksi Pola Kejadian Bencana Menggunakan Algoritma Naïve Bayes di Kabupaten Boyolali,” Jitu, vol. 8, no. 1, pp. 97–106, 2024, doi: https://doi.org/10.36596/jitu.v8i1.1119. DOI: https://doi.org/10.36596/jitu.v8i1.1119