Hemorrhage Segmentation on Retinal Images for Early Detection of Diabetic Retinopathy

Main Article Content

Hendar Hermawan
Adithya Kusuma Whardana

Abstract

Diabetes mellitus is a chronic disorder that can lead to serious complications, including diabetic retinopathy, which affects the eyes and can potentially lead to blindness. Rapid identification of diabetic retinopathy is crucial to facilitate quicker and more efficient treatment for patients. This study aims to segment hemorrhages in retinal images using the Laplacian of Gaussian (LoG) approach in conjunction with threshold-based segmentation and analysis of region properties, including eccentricity. The LoG approach is utilized for its ability to detect edges, features, and abrupt variations in image intensity, thereby optimally highlighting the bleeding lesion area. With accurate segmentation, it is hoped that early detection and monitoring of diabetic retinopathy can be improved. This research uses the IDRiD, DR_2000, and DIARETDB1 datasets, recommending the use of IDRiD and DIARETDB1 for optimal results. Through this methodology, it is expected to make a significant contribution to reducing the risk of blindness in diabetes patients.

Article Details

How to Cite
Hermawan, H., & Whardana, A. K. (2024). Hemorrhage Segmentation on Retinal Images for Early Detection of Diabetic Retinopathy. JEECS (Journal of Electrical Engineering and Computer Sciences), 9(2), 127–138. https://doi.org/10.54732/jeecs.v9i2.5
Section
Articles

References

I. Kurniastuti and A. Andini, (2019), “Determination of RGB in Fingernail Image As Early Detection of Diabetes Mellitus,” Proceedings - 2019 International Conference on Computer Science, Information Technology, and Electrical Engineering, ICOMITEE 2019, pp. 206–210, doi:10.1109/ICOMITEE.2019.8920876. DOI: https://doi.org/10.1109/ICOMITEE.2019.8920876

A. Singh Gautam, S. Kumar Jana, and M. P. Dutta, (2019), “Automated diagnosis of diabetic retinopathy using image processing for non-invasive biomedical application,” 2019 International Conference on Intelligent Computing and Control Systems, ICCS 2019, pp. 809–812, doi:10.1109/ICCS45141.2019.9065446. DOI: https://doi.org/10.1109/ICCS45141.2019.9065446

A. K. Whardana and P. H. Rantelinggi, (2023), “Detection Diabetic Retinopathy with Supervised Learning,” JEECS (Journal of Electrical Engineering and Computer Sciences), vol. 8, no. 2, pp. 157–162, doi:10.54732/JEECS.V8I2.7. DOI: https://doi.org/10.54732/jeecs.v8i2.7

Q. Li, S. Fan, and C. Chen, (2019), “An Intelligent Segmentation and Diagnosis Method for Diabetic Retinopathy Based on Improved U-NET Network,” Journal of Medical Systems, vol. 43, no. 9, pp. 1–9, doi:10.1007/S10916-019-1432-0/METRICS. DOI: https://doi.org/10.1007/s10916-019-1432-0

L. Qiao, Y. Zhu, and H. Zhou, (2020), “Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms,” IEEE Access, vol. 8, pp. 104292–104302, doi:10.1109/ACCESS.2020.2993937. DOI: https://doi.org/10.1109/ACCESS.2020.2993937

A. K. Whardana and D. Sutaji, (2017), “Segmentasi pembuluh darah pada citra retina dengan menggunakan multi-scale line detector (Msld) dan adaptive morphology,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, vol. 3, no. 1, pp. 49–56, doi:10.26594/REGISTER.V3I1.716. DOI: https://doi.org/10.26594/register.v3i1.716

A. K. Whardana, P. H. Rentelinggi, and H. D. Timothy, (2023), “Diabetic Retinopathy Blood Vessel Detection Using CNN and RNN Techniques,” Journal of Information Technology and Cyber Security, vol. 1, no. 2, pp. 68–75, doi:10.30996/JITCS.8716. DOI: https://doi.org/10.30996/jitcs.8716

A. K. Whardana and N. Suciati, (2014), “A Simple Method for Optic Disk Segmentation from Retinal Fundus Image,” International Journal of Image, Graphics and Signal Processing, vol. 6, no. 11, p. 36, doi:10.5815/IJIGSP.2014.11.05. DOI: https://doi.org/10.5815/ijigsp.2014.11.05

U. Ishtiaq, S. Abdul Kareem, E. R. M. F. Abdullah, G. Mujtaba, R. Jahangir, and H. Y. Ghafoor, (2020), “Diabetic retinopathy detection through artificial intelligent techniques: a review and open issues,” Multimedia Tools and Applications, vol. 79, no. 21–22, pp. 15209–15252, doi:10.1007/S11042-018-7044-8/METRICS. DOI: https://doi.org/10.1007/s11042-018-7044-8

W. X. Lim, Z. Chen, A. Ahmed, T. Chandesa, and I. Liao, (2020), “A Review of Machine Learning Techniques for Applied Eye Fundus and Tongue Digital Image Processing with Diabetes Management System,” in DISP.

A. K. Whardana and H. Tjandrasa, (2014), “Segmentasi Microaneurysm Pada Citra Fundus Retina Untuk Deteksi Dini Diabetic Retinopathy,” Scan : Jurnal Teknologi Informasi dan Komunikasi, vol. 9, no. 3, pp. 49–54, doi:10.33005/scan.v9i3.866. DOI: https://doi.org/10.33005/scan.v9i3.866

S. Dubey and M. Dixit, (2022), “Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review,” Multimedia Tools and Applications 2022 82:10, vol. 82, no. 10, pp. 14471–14525, doi:10.1007/S11042-022-13841-9. DOI: https://doi.org/10.1007/s11042-022-13841-9

R. Naveen, S. A. Sivakumar, B. Maruthi Shankar, and A. Keerthana Priyaa, (2019), “Diabetic retinopathy detection using image processing,” International Journal of Engineering and Advanced Technology, vol. 8, no. 6 Special Issue, pp. 937–941, doi:10.35940/IJEAT.F1179.0886S19. DOI: https://doi.org/10.35940/ijeat.F1179.0886S19

A. Skouta, A. Elmoufidi, S. Jai-Andaloussi, and O. Ouchetto, (2022), “Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network,” Journal of Big Data, vol. 9, no. 1, pp. 1–24, doi:10.1186/S40537-022-00632-0/TABLES/3. DOI: https://doi.org/10.1186/s40537-022-00632-0

I. A. Thompson, A. K. Durrani, and S. Patel, (2018), “Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy,” Eye 2018 33:4, vol. 33, no. 4, pp. 648–652, doi:10.1038/s41433-018-0286-x. DOI: https://doi.org/10.1038/s41433-018-0286-x

F. Zhang, Y. Wu, M. Xu, S. Liu, C. Peng, and Z. Gao, (2021), “A Morphological Image Segmentation Algorithm for Circular Overlapping Cells,” Intelligent Automation & Soft Computing, vol. 32, no. 1, pp. 301–321, doi:10.32604/IASC.2022.021929. DOI: https://doi.org/10.32604/iasc.2022.021929

S. K. Ghosal, J. K. Mandal, and R. Sarkar, (2018), “High payload image steganography based on Laplacian of Gaussian (LoG) edge detector,” Multimedia Tools and Applications, vol. 77, no. 23, pp. 30403–30418, doi:10.1007/S11042-018-6126-Y/METRICS. DOI: https://doi.org/10.1007/s11042-018-6126-y

D. Oliva, E. H. Houssein, and S. Hinojosa, Eds., (2021), “Metaheuristics in Machine Learning: Theory and Applications,” vol. 967, doi:10.1007/978-3-030-70542-8. DOI: https://doi.org/10.1007/978-3-030-70542-8

R. I. Borman, Y. Fernando, and Y. E. P. Yudoutomo, (2022), “Identification of Vehicle Types Using Learning Vector Quantization Algorithm with Morphological Features,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 2, pp. 339–345, doi:10.29207/RESTI.V6I2.3954. DOI: https://doi.org/10.29207/resti.v6i2.3954