Alzheimer Disease Prediction Through Guided Predictive Modeling With Machine Learning
Main Article Content
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by the accumulation of misfolded brain proteins, especially beta-amyloid plaques, resulting in cognitive deterioration and memory impairment. However, there has been no effort of early detection to facilitate prompt intervention and preventive strategies. This research fulfills this essential need by employing the Open Access Series of Imaging Studies (OASIS) dataset supplied by the Alzheimer's Disease Neuroimaging Initiative (ADNI). The research employs the Cross-industry Standard Process for Data Mining (CRISP-DM) methodology to create and assess a classification model utilizing Artificial Neural Networks (ANN). The model attains a remarkable accuracy rate of 96%, exhibiting elevated precision, recall, and F1-scores across all categories. A 10-fold cross-validation technique was utilized to assess the model's robustness, resulting in an average accuracy of 90.7%. These findings underscore the efficacy of artificial neural networks in identifying Alzheimer's disease in its initial phases. This research utilizes advanced data mining approaches to improve predictive capacities and highlights the promise of machine learning in tackling intricate healthcare issues.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A. Atri, “The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management,” Medical Clinics of North America, vol. 103, no. 2, pp. 263–293, Mar. 2019, doi: 10.1016/J.MCNA.2018.10.009. DOI: https://doi.org/10.1016/j.mcna.2018.10.009
J. Povova et al., “Epidemiological of and risk factors for Alzheimer‘s disease: A review,” Biomedical Papers, vol. 156, no. 2, pp. 108–114, 2012, doi: 10.5507/BP.2012.055. DOI: https://doi.org/10.5507/bp.2012.055
J. C. Morris, “The Clinical Dementia Rating (CDR): current version and scoring rules,” Neurology, vol. 43, no. 11, pp. 2412–2414, 1993, doi: 10.1212/WNL.43.11.2412-A. DOI: https://doi.org/10.1212/WNL.43.11.2412-a
Z. Breijyeh, R. Karaman, D. Muñoz-Torrero, and R. Dembinski, “Comprehensive Review on Alzheimer’s Disease: Causes and Treatment,” Molecules, vol. 25, no. 24, p. 5789, Dec. 2020, doi: 10.3390/MOLECULES25245789. DOI: https://doi.org/10.3390/molecules25245789
J. C. De La Torre, “Alzheimer’s Disease is Incurable but Preventable,” Journal of Alzheimer’s Disease, vol. 20, no. 3, pp. 861–870, May 2010, doi: 10.3233/JAD-2010-091579. DOI: https://doi.org/10.3233/JAD-2010-091579
J. Rasmussen and H. Langerman, “Alzheimer’s Disease – Why We Need Early Diagnosis,” Degenerative Neurological and Neuromuscular Disease, vol. 9, pp. 123–130, Dec. 2019, doi: 10.2147/DNND.S228939. DOI: https://doi.org/10.2147/DNND.S228939
H. A. Helaly, M. Badawy, and A. Y. Haikal, “Deep Learning Approach for Early Detection of Alzheimer’s Disease,” Cognitive Computation, vol. 14, no. 5, pp. 1711–1727, Sep. 2022, doi: 10.1007/S12559-021-09946-2/FIGURES/15. DOI: https://doi.org/10.1007/s12559-021-09946-2
E. Moradi, A. Pepe, C. Gaser, H. Huttunen, and J. Tohka, “Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects,” NeuroImage, vol. 104, pp. 398–412, Jan. 2015, doi: 10.1016/J.NEUROIMAGE.2014.10.002. DOI: https://doi.org/10.1016/j.neuroimage.2014.10.002
N. Wang, J. Chen, H. Xiao, L. Wu, H. Jiang, and Y. Zhou, “Application of artificial neural network model in diagnosis of Alzheimer’s disease,” BMC Neurology, vol. 19, no. 1, pp. 1–8, Jul. 2019, doi: 10.1186/S12883-019-1377-4/TABLES/6. DOI: https://doi.org/10.1186/s12883-019-1377-4
D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults,” Journal of Cognitive Neuroscience, vol. 19, no. 9, pp. 1498–1507, Sep. 2007, doi: 10.1162/JOCN.2007.19.9.1498. DOI: https://doi.org/10.1162/jocn.2007.19.9.1498
D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults,” Journal of Cognitive Neuroscience, vol. 22, no. 12, pp. 2677–2684, Dec. 2010, doi: 10.1162/JOCN.2009.21407. DOI: https://doi.org/10.1162/jocn.2009.21407
F. Provost and T. Fawcett, Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. CA: O’Reilly Media, 2013.
S. J. B. Vos et al., “Preclinical Alzheimer’s disease and its outcome: A longitudinal cohort study,” The Lancet Neurology, vol. 12, no. 10, pp. 957–965, Oct. 2013, doi: 10.1016/S1474-4422(13)70194-7. DOI: https://doi.org/10.1016/S1474-4422(13)70194-7
G. Navarro-Carrillo, M. Alonso-Ferres, M. Moya, and I. Valor-Segura, “Socioeconomic Status and Psychological Well-Being: Revisiting the Role of Subjective Socioeconomic Status,” Frontiers in Psychology, vol. 11, p. 543258, Jun. 2020, doi: 10.3389/FPSYG.2020.01303/BIBTEX. DOI: https://doi.org/10.3389/fpsyg.2020.01303
I. Arevalo-Rodriguez et al., “Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI),” Cochrane Database of Systematic Reviews, vol. 2021, no. 7, Jul. 2021, doi: 10.1002/14651858.CD010783.PUB3/MEDIA/CDSR/CD010783/IMAGE_T/TCD010783-TST-003.PNG. DOI: https://doi.org/10.1002/14651858.CD010783.pub3
J. E. Tan, E. Strauss, and E. M. S. Sherman, “Clinical Dementia Rating,” Encyclopedia of Clinical Neuropsychology, pp. 803–806, 2018, doi: 10.1007/978-3-319-57111-9_533. DOI: https://doi.org/10.1007/978-3-319-57111-9_533
S. Sargolzaei et al., “Estimating Intracranial Volume in Brain Research: An Evaluation of Methods,” Neuroinformatics, vol. 13, no. 4, pp. 427–441, Oct. 2015, doi: 10.1007/S12021-015-9266-5/METRICS. DOI: https://doi.org/10.1007/s12021-015-9266-5
M. Kijonka et al., “Whole Brain and Cranial Size Adjustments in Volumetric Brain Analyses of Sex- and Age-Related Trends,” Frontiers in Neuroscience, vol. 14, p. 509955, Apr. 2020, doi: 10.3389/FNINS.2020.00278/BIBTEX. DOI: https://doi.org/10.3389/fnins.2020.00278
L. V. Fulton, D. Dolezel, J. Harrop, Y. Yan, and C. P. Fulton, “Classification of Alzheimer’s Disease with and without Imagery Using Gradient Boosted Machines and ResNet-50,” Brain Sciences, vol. 9, no. 9, p. 212, Aug. 2019, doi: 10.3390/BRAINSCI9090212. DOI: https://doi.org/10.3390/brainsci9090212
D. Galatro and S. Dawe, “Exploratory Data Analysis,” in Data Analytics for Process Engineers. Synthesis Lectures on Mechanical Engineering, Springer, Cham, 2024, pp. 13–57. DOI: https://doi.org/10.1007/978-3-031-46866-7_2
A. T. Jebb, S. Parrigon, and S. E. Woo, “Exploratory data analysis as a foundation of inductive research,” Human Resource Management Review, vol. 27, no. 2, pp. 265–276, Jun. 2017, doi: 10.1016/J.HRMR.2016.08.003. DOI: https://doi.org/10.1016/j.hrmr.2016.08.003
C. McCue, “Process Models for Data Mining and Predictive Analysis,” in Data Mining and Predictive Analysis, Butterworth-Heinemann, 2015, pp. 51–74. DOI: https://doi.org/10.1016/B978-0-12-800229-2.00004-3
S. B. Maind and P. Wankar, “Research Paper on Basic of Artificial Neural Network,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 2, no. 1, pp. 96–100, Jan. 2014, doi: 10.17762/IJRITCC.V2I1.2920.
M. Mishra and M. Srivastava, “A view of Artificial Neural Network,” 2014, doi: 10.1109/ICAETR.2014.7012785. DOI: https://doi.org/10.1109/ICAETR.2014.7012785