Copper Winding Voice Coil Speaker Microcontroller Based

Main Article Content

Adi Kurniawan Saputro
Hanifudin Sukri
Andre Putra Pratama
Koko Joni
Achmad Fiqhi Ibadillah
Monika Faswia Fahmi

Abstract

The voice coil is a vital speaker component, producing sound through electromagnetic vibrations. Generally, commercially available voice coils do not meet standard quality specifications, especially in terms of copper quality and adhesive strength. This problem often leads to issues such as coil burning or breakage during operation. On the other hand, ordering custom voice coils through manual winding processes requires considerable time. This study aims to address these limitations by designing an automated coil winding device that employs Pulse Width Modulation (PWM) techniques to control the speed of a DC motor, enabling the production of voice coils with specifications and durability tailored to specific needs. An Arduino Nano microcontroller controls the system and consists of a BTS 7960 motor driver, a Direct Current (DC) motor, an optocoupler sensor, a rotary encoder, a 4x4 keypad, and an LCD display with an I2C interface. Coil durability testing was conducted using an ohmmeter and an amplifier with a transformer ranging from 20A 45V to 30A 45V. The testing results indicate that coils produced with the automated winder can be adjusted to approach the 8-ohm specification, with a tolerance of 0.1 to 0.3 ohms, suitable for speaker requirements. The comparison results show that commercial voice coils exhibit resistances below 8 ohms, with the lowest resistance measured at 4.9 ohms for larger coils. During power testing, coils with a diameter of 35.5 mm and copper wire diameters of 0.20 mm and 0.23 mm broke when tested with a 20A 45V amplifier. In contrast, commercial coils remained stable up to an input power of 372 W and output power of 273 W, although a burning odor was detected. These findings indicate that the copper quality in commercial coils is superior in resisting amplifier power up to 30A 45V compared to coils produced with the automated device.

Article Details

How to Cite
Saputro, A. K., Sukri, H., Pratama, A. P., Joni, K., Ibadillah, A. F., & Fahmi, M. F. (2024). Copper Winding Voice Coil Speaker Microcontroller Based. JEECS (Journal of Electrical Engineering and Computer Sciences), 9(2), 95–102. https://doi.org/10.54732/jeecs.v9i2.1
Section
Articles

References

M. Muchid, N. Kholili, and K. Hariyanto, (2021), “Identifikasi Ketebalan Cat Dies Frame Speaker Metode Pengukuran Dimensi After & Before,” vol. 6, pp. 208–217, doi:10.24252/INSTEK.V6I2.24133. DOI: https://doi.org/10.24252/instek.v6i2.24133

F. K. Hapsari, G. F. Bhakti, and D. M. Dewantoro, (2020), “Pemilihan Mekanisme Unit Penggulungan Coil Pada Perancangan Winding Coil Machine,” IMDeC, vol. 2, pp. 282–290.

R. J. Putra and N. Gusnita, (2024), “Analisis Pengaruh Diameter Lilitan dan Variasi Jumlah Lilitan Terhadap Efisiensi Generator Sinkron Magnet Permanen 24 Slot 16 Pole,” Jurnal Al-Azhar Indonesia Seri Sains Dan Teknologi, vol. 9, no. 1, pp. 73–81, doi:10.36722/SST.V9I1.2713. DOI: https://doi.org/10.36722/sst.v9i1.2713

M. D. Suryani and M. L. Singgih, (2019), “Peningkatan Performansi Assembly Line untuk Mereduksi Defect Voice Coil Touch pada Perusahaan Speaker,” Jurnal Teknik ITS, vol. 8, no. 1, pp. 1–5, doi:10.12962/j23373539.v8i1.37974. DOI: https://doi.org/10.12962/j23373539.v8i1.37974

Y. N. Rohmat, Rachmatullah, R. M. Akbar, Badruzzaman, L. Van Gunawan, and O. A. Nugroho, (2022), “Perancangan Mesin Penggulung Dinamo Semi-Otomatis,” Journal of Applied Mechanical Technology, vol. 1, no. 1, pp. 36–45, doi:10.31884/JAMET.V1I1.13. DOI: https://doi.org/10.31884/jamet.v1i1.13

F. F. Kurniawan, P. Endramawan, and D. Hardiyanto, (2022), “Rancang Bangun Pengatur Kecepatan Motor DC Dengan PWM Berbasis Arduino Nano,” Jupiter (Jurnal Pendidikan Teknik Elektro), vol. 7, no. 2, pp. 9–16, doi:10.25273/JUPITER.V7I2.14028. DOI: https://doi.org/10.25273/jupiter.v7i2.14028

D. Setiawan, A. F. Boy, A. Hafidz, and I. Ishak, (2020), “Implementasi teknik pwm pada rancang bangun alat deteksi kecepatan kendaraan berdasarkan perputaran roda berbasis mikrokontroller,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 19, no. 1, doi:10.53513/JIS.V19I1.224. DOI: https://doi.org/10.53513/jis.v19i1.224

R. I. S. and H. Hartono, (2018), “Rancang Bangun Pulse Width Modulation (PWM) Sebagai Pengatur Kecepatan Motor DC Berbasis Mikrokontroler Arduino,” Jurnal Penelitian, vol. 3, no. 1, pp. 50–58, doi:10.46491/JP.V3I1.31. DOI: https://doi.org/10.46491/jp.v3e1.31.50-58

Y. Hermanto and A. Kiswantono, (2022), “Stability Control of Frequency and Voltage in Wind Power Plant Using Complementary Load with Pid Control, Pwm and Thingspeak Monitor,” JEECS (Journal of Electrical Engineering and Computer Sciences), vol. 7, no. 1, pp. 1159–1168, doi:10.54732/jeecs.v7i1.211. DOI: https://doi.org/10.54732/jeecs.v7i1.211

M. Ulum, H. Haryanto, D. Rahmawati, R. Alfita, A. K. Saputro, and M. Hardiwansyah, Sensor & Aktuator Menggunakan Simulasi Arduino, 1st ed. Sleman-Jogjakarta: PENERBIT KBM INDONESIA, 2024.

A. F. Ibadillah, K. S. Adi, M. Ulum, K. Joni, and A. R. H. Rizki, Pengenalan mikrokontroler berbasis Arduino, 1st ed. jawa tengah: citra dharma cendekia, 2023.

M. H. A. Malik and D. D. S. Fatimah, (2017), “Perancangan Pengendali Keamanan Pintu Lift Otomatis Berbasis Arduino Nano,” Jurnal Algoritma, vol. 14, no. 2, pp. 392–399, doi:10.33364/ALGORITMA/V.14-2.392. DOI: https://doi.org/10.33364/algoritma/v.14-2.392

D. Akbar and S. Riyadi, (2018), “Pengaturan Kecepatan Pada Motor Brushless DC ( BLDC ) Menggunakan PWM ( Pulse Width Modulation ),” in Seminar Nasional Instrumentasi, Kontrol dan Otomasi (SNIKO) 2018, pp. 10–11. DOI: https://doi.org/10.5614/sniko.2018.30

I. Y. Basri, A. Arsyfadhillah, D. Irfan, and T. Thamrin, (2018), “Rancang Bangun Media Pembelajaran Mini Trainer IC 555 Rancang Bangun Media Pembelajaran Mini Trainer IC 555,” INVOTEK: Jurnal Inovasi Vokasional dan Teknologi, vol. 18, no. 2, pp. 65–76, doi:10.24036/INVOTEK.V18I2.332. DOI: https://doi.org/10.24036/invotek.v18i2.332

N. Cameron, “Electronics Projects with the ESP8266 and ESP32,” Berkeley, CA: Apress, 2021, pp. 467–503. DOI: https://doi.org/10.1007/978-1-4842-6336-5_17