Object Sorting Conveyor with Detection Color Using ESP-32 Camera Python Based on Open-CV

Isi Artikel Utama

Indah Sulistiyowati
Hafidz Maulana Ichsan
Izza Anshory

Abstrak

The OpenCV Python library has been developed in all technology fields, including the industrial sector. In the industrial world, there are objects sorting tools in the form of conveyors. These instruments are presently more advanced since they employ cameras to read the things that should be sorted. The purpose of applying the Open Source Computer Vision Library (OpenCV) system to this object’s sorter conveyor is to make it easier to sort objects based on color detection technology. The OpenCV method for object detection based on color was employed to select those objects. The first step in identifying the object in question is to capture RGB (red, green, and blue) objects in real time and transform their colors into HSV. Additionally, by masking the object to be centered and applying a threshold, the morphological process can remove unnecessary noise from the image. The investigation results include the ability to differentiate objects based on RGB color when sorted by considering the HSV value on the surface of colored objects.

Rincian Artikel

Cara Mengutip
Sulistiyowati, I., Ichsan, H. M., & Anshory, I. (2024). Object Sorting Conveyor with Detection Color Using ESP-32 Camera Python Based on Open-CV. JEECS (Journal of Electrical Engineering and Computer Sciences), 9(1), 61–68. https://doi.org/10.54732/jeecs.v9i1.7
Bagian
Articles

Referensi

R. Bangun et al., (2020), “Rancang Bangun Alat Kendali Sortir Barang Berdasarkan Empat Kode Warna,” JTEV (Jurnal Teknik Elektro dan Vokasional), vol. 6, no. 2, pp. 391–402, doi:10.24036/JTEV.V6I2.109360.

D. R. Rajagukguk and Iqbal Panjaitan, (2020), “Compression of Color Image Using Quantization Method,” Jurnal Info Sains : Informatika dan Sains, vol. 10, no. 2, pp. 13–18, doi:10.54209/infosains.v10i2.32. DOI: https://doi.org/10.54209/infosains.v10i2.32

F. Pfitzner, A. Braun, and A. Borrmann, (2024), “From data to knowledge: Construction process analysis through continuous image capturing, object detection, and knowledge graph creation,” Automation in Construction, vol. 164, p. 105451, doi:10.1016/J.AUTCON.2024.105451. DOI: https://doi.org/10.1016/j.autcon.2024.105451

S. Suwarno and K. Kevin, (2020), “Analysis of Face Recognition Algorithm: Dlib and OpenCV,” Journal of Informatics and Telecommunication EngineerinG, vol. 4, no. 1, pp. 173–184, doi:10.31289/JITE.V4I1.3865. DOI: https://doi.org/10.31289/jite.v4i1.3865

S. Mala and Rasiban, (2021), “Klasifikasi Kematangan Buah Pisang Tanduk Berdasarkan HSV,” Jurnal Jupiter, vol. 1, no. 1, pp. 197–207.

T. J. Nuva, M. I. Ahmed, and S. S. Mahmud, (2022), “Design & Fabrication of Automatic Color & Weight-Based Sorting System on Conveyor Belt,” Journal of Integrated and Advanced Engineering (JIAE), vol. 2, no. 2, pp. 147–157, doi:10.51662/jiae.v2i2.87. DOI: https://doi.org/10.51662/jiae.v2i2.87

M. I. Sari, R. Handayani, S. Siregar, and B. Isnu, (2018), “Pemilah Benda Berdasarkan Warna Menggunakan Sensor Warna TCS3200,” TELKA - Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol, vol. 4, no. 2, pp. 85–90, doi:10.15575/TELKA.V4N2.85-90. DOI: https://doi.org/10.15575/telka.v4n2.85-90

F. R. Wicaksono, A. Rusdinar, I. Prasetya, and D. Wibawa, (2018), “Perancangan Dan Implementasi Alat Penyortir Barang Pada Konveyor Dengan Pengolahan Citra Design and Implementation of Items Device Sorting on Conveyor With Image Processing,” e-Proceeding of Engineering, vol. 5, no. 1, pp. 40–47.

E. D. Febriyanti, A. Alimuddin, and H. M. Putra, (2024), “Rancang Bangun Penerimaan Box Paket Berbasis Internet of Things (IOT),” Printer : Jurnal Pengembangan Rekayasa Informatika dan Komputer, vol. 2, no. 1, pp. 37–45.

H. Attar, A. T. Abu-Jassar, V. Yevsieiev, V. Lyashenko, I. Nevliudov, and A. K. Luhach, (2022), “Zoomorphic Mobile Robot Development for Vertical Movement Based on the Geometrical Family Caterpillar,” Computational intelligence and neuroscience, vol. 2022, pp. 1–19, doi:10.1155/2022/3046116. DOI: https://doi.org/10.1155/2022/3046116

O. A. Putra and R. Handika, (2022), “Rancang Bangun Sistem Keamanan Lalu Lintas Menggunakan Smartphone Dan Esp32cam Berbasis Arduino Mega 2560,” Jurnal Sains dan Teknologi (JSIT), vol. 2, no. 2, pp. 120–130, doi:10.47233/jsit.v2i3.202. DOI: https://doi.org/10.47233/jsit.v2i3.202

N. I. Humaira B, M. Herman, N. Nurhikma, and A. B. Kaswar, (2021), “Klasifikasi Tingkat Kualitas Dan Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Jaringan Syaraf Tiruan,” Journal of Embedded Systems, Security and Intelligent Systems, vol. 2, no. 1, p. 18, doi:10.26858/jessi.v2i1.20329. DOI: https://doi.org/10.26858/jessi.v2i1.20329

J. Jusrawati, A. Futri, and A. B. Kaswar, (2021), “Klasifikasi Tingkat Kematangan Buah Pisang Dalam Ruang Warna RGB Menggunakan Jaringan Syaraf Tiruan (JST),” Journal of Embedded Systems, Security and Intelligent Systems, vol. 2, no. 1, pp. 49–54, doi:10.26858/JESSI.V2I1.20327. DOI: https://doi.org/10.26858/jessi.v2i1.20327

A. M. Elhanafi, R. Siregar, M. Yeni, and S. An-nissa, (2022), “Cryptography Application on RGB Overlapping Block Based PVD Using AES,” Jurnal dan Penelitian Teknik Informatika, vol. 7, no. 3, pp. 2116–2124.

D. S. Febriyan and R. D. Puriyanto, (2021), “Implementation of DC Motor PID Control on Conveyor for Separating Potato Seeds by Weight,” International Journal of Robotics and Control Systems, vol. 1, no. 1, pp. 15–26, doi:10.31763/ijrcs.v1i1.221. DOI: https://doi.org/10.31763/ijrcs.v1i1.221

H. S. Ghifari and F. Utaminingrum, (2022), “Klasifikasi Kualitas Minyak Goreng berdasarkan Fitur Warna dan Kejernihan dengan Metode K-Nearest Neighbour berbasis Arduino Uno,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 7, pp. 3269–3274.

N. M. Syahrian, P. Risma, and T. Dewi, (2017), “Vision-Based Pipe Monitoring Robot for Crack Detection Using Canny Edge Detection Method as an Image Processing Technique,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 2, no. 4, pp. 243–250, doi:10.22219/kinetik.v2i4.243. DOI: https://doi.org/10.22219/kinetik.v2i4.243

F. E. Saputra, R. Cahya Wihandika, and A. W. Widodo, (2021), “Penentuan Kualitas Biji Kopi Menggunakan Local Ternary Patterns Dan RGB-HSV Color Moment Dengan Learning Vector Quantization,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 6, pp. 2299–2307.