Implementation of Data Mining Algorithm C4.5 to Predict Loan Payments in the Harum Manis Women's Union in Sirnoboyo Village

Isi Artikel Utama

Miftahul Mukti Anas

Abstrak

The women's union, "Harum Manis" is an active savings and loan cooperative that uses members' funds in savings and loans. Given the large number of prospective members who register each year, the union still needs to be more selective in accepting prospective members who only see from work and salary, thus causing lousy credit. To reduce the occurrence of bad loans, predicting prospective members' smooth payment status and finding prospective members, including bad credit or current loans, is necessary. This research applies classification data mining techniques using the Decision Tree C4.5 method to determine the smooth payment class, which is a jam class or a smooth class. The attributes used in this study consist of four variables, namely age, marital status, income, and home status. System testing is done three times testing. The data were taken from 102 data for the "Harum Manis" Women's Union Member Loan data. Based on the test results, it was found that the first test produced the highest accuracy, reaching 64%.

Rincian Artikel

Cara Mengutip
Anas, M. M. (2024). Implementation of Data Mining Algorithm C4.5 to Predict Loan Payments in the Harum Manis Women’s Union in Sirnoboyo Village. JEECS (Journal of Electrical Engineering and Computer Sciences), 9(1), 89–94. https://doi.org/10.54732/jeecs.v9i1.10
Bagian
Articles

Referensi

N. Asmita, (2020), “Peran Koperasi Simpan Pinjam dan Pembiayaan Syariah (KSPPS) dalam Pemberdayaan Ekonomi Masyarakat (Studi pada BMT Al-Ittihad Rumbai Pekanbaru,” Jurnal An-Nahl, vol. 7, no. 2, pp. 171–176, doi:10.54576/annahl.v6i2.49. DOI: https://doi.org/10.54576/annahl.v6i2.49

M. S. Soumokil, F. Edoway, and A. Numberi, (2022), “Analisa Sistem Pemberian Dan Pengawasan Kredit Serta Faktor Penyebab Terjadinya Kredit Macet Pada Bank Papua Cabang Timika,” vol. 6, no. 1, pp. 21–34. DOI: https://doi.org/10.55264/jumabis.v6i1.82

F. Gultom and T. Simanjuntak, (2021), “Prediksi Tingkat Kelancaran Pembayaran Kredit Bank Dengan Menggunakan Algoritma Naïve Bayes Dan K-Nearest Neighbor,” METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi, vol. 4, no. 2, pp. 98–102, doi:10.46880/jmika.vol4no2.pp98-102. DOI: https://doi.org/10.46880/jmika.Vol4No2.pp98-102

M. Hasan, (2017), “Prediksi Tingkat Kelancaran Pembayaran Kredit Bank Menggunakan Algoritma Naïve Bayes Berbasis Forward Selection,” ILKOM Jurnal Ilmiah, vol. 9, no. 3, pp. 317–324, doi:10.33096/ilkom.v9i3.163.317-324. DOI: https://doi.org/10.33096/ilkom.v9i3.163.317-324

L. Desyanita and A. Wibowo, (2020), “Pemodelan Sistem Prediksi Kelayakan Pengajuan Kredit,” Elkom Elektronika Dan Komputer, vol. 13, no. 2, pp. 10–22.

T. Hidayatulloh, A. Fajria, R. N. Lestari, and N. S. Z. Nufus, (2022), “Algoritma C4.5 Untuk Menentukan Kelayakan Pemberian Kredit (Studi kasus: Bank Mandiri Taspen Kantor Kas Sukabumi),” Jurnal Larik: Ladang Artikel Ilmu Komputer, vol. 2, no. 2, pp. 66–74, doi:10.31294/larik.v2i2.1836. DOI: https://doi.org/10.31294/larik.v2i2.1836

E. Wijaya, F. A. Tarigan, and Michael, (2021), “Aplikasi Prediksi Penentuan Kelancaran Pembayaran Koperasi Dengan Algoritma C5.0,” Jurnal Times: Technology Informatics & Computer System, vol. 10, no. 1, pp. 31–38.

I. P. Casuarina, M. N. Hayati, and S. Prangga, (2022), “Klasifikasi Status Pembayaran Kredit Barang Elektronik dan Furniture Menggunakan Support Vector Machine,” Eksponensial, vol. 13, no. 1, p. 71, doi:10.30872/eksponensial.v13i1.887. DOI: https://doi.org/10.30872/eksponensial.v13i1.887

Nurdina Rasjid, Nurhikmah Arifin, and Nilam Cahya, (2021), “Klasifikasi Nasabah Bank Layak Kredit Menggunakan Metode Naive Bayes,” Jurnal ilmiah Sistem Informasi dan Ilmu Komputer, vol. 1, no. 1, pp. 01–10, doi:10.55606/juisik.v2i2.187. DOI: https://doi.org/10.55606/juisik.v2i2.187

F. M. Akbar, F. A. Bachtiar, and W. Purnomo, (2020), “Klasifikasi Kredit Macet berdasarkan Profil Nasabah pada Koperasi Serba Usaha Surya Abadi menggunakan Algoritme C5. 0,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 9, pp. 3047–3056.

M. N. R. Fitriani, B. Priyatna, B. Huda, A. L. Hananto, and T. Tukino, (2023), “Implementasi Metode K-Means Untuk Memprediksi Status Kredit Macet,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 3, p. 554, doi:10.30865/json.v4i3.5953. DOI: https://doi.org/10.30865/json.v4i3.5953

J. B. Sembiring, H. Manurung, and A. Sihombing, (2023), “Pengelompokan Data Tunggakan Pembayaran Kredit Mobil Menggunakan Metode Clustering (Studi Kasus: Cv Citra Kencana Mobil),” Jurnal Manajemen Informatika Jayakarta, vol. 3, no. July, pp. 275–291.