Sentiment Analysis Regarding the Indonesian House of Representatives Rejecting the Constitutional Court Decision from Social Media Using Naive Bayes

Isi Artikel Utama

Fahar Abdul Aziz
Lailan Sofinah Harahap

Abstrak

This study analyzes public sentiment towards the HOR's rejection of the Constitutional Court's decision regarding the age limit for regional head candidates. Data was obtained from TikTok comments using scraping techniques with the Apify platform, resulting in 574 comments being analyzed. Sentiment labeling was automatically used VADER (Valence Aware Dictionary and Sentiment Reasoner), with positive, neutral, and negative sentiment categories. Text representation was carried out using TF-IDF, and sentiment classification using the Naive Bayes algorithm. The analysis results showed that most comments were neutral (42.0%) and positive (41.8%), while negative sentiment was only 16.2%. This study provides important insights into public perceptions of political issues involving the HoR and Constitutional Court decisions. By analyzing sentiment through comment data on TikTok, this study shows that lexicon-based approaches such as VADER can be used for automatic sentiment labeling, saving time compared to manual methods. In addition, classical algorithms such as Naive Bayes, combined with TF-IDF text representation, have proven effective in handling sentiment classification for short and informal texts such as social media comments.

Rincian Artikel

Cara Mengutip
Aziz, F. A., & Harahap, L. S. (2025). Sentiment Analysis Regarding the Indonesian House of Representatives Rejecting the Constitutional Court Decision from Social Media Using Naive Bayes. JEECS (Journal of Electrical Engineering and Computer Sciences), 10(1), 31–37. https://doi.org/10.54732/jeecs.v10i1.4
Bagian
Articles

Referensi

S. Fikri, “Analisis Putusan Mahkamah Konstitusi Nomor 60/PUU-XXII/2024 terhadap Hak Politik dalam Perspektif Teori Kontrak Sosial,” Amsir Law Journal, vol. 6, no. 1, pp. 40–55, Oct. 2024, doi: 10.36746/ALJ.V6I1.589. DOI: https://doi.org/10.36746/alj.v6i1.589

H. Hartono, “Urgensi Putusan MK Nomor 60/PUU-XXII/2024 Terhadap Penyelenggaraan Pilkada Tahun 2024,” Jurnal Intelek Dan Cendikiawan Nusantara, vol. 1, no. 4, pp. 5374–5383, Aug. 2024, Accessed: Feb. 21, 2025. [Online]. Available: https://jicnusantara.com/index.php/jicn/article/view/855.

K. Baehaki, “Implikasi Politik Putusan Mahkamah Konstitusi Nomor:60/PUU-XXII/2024 Terkait Ambang Batas Pencalonan Kepala Daerah,” YUSTISI, vol. 11, no. 3, pp. 451–460, Oct. 2024, doi: 10.32832/YUSTISI.V11I3.17912.

F. A. Indriyani, A. Fauzi, and S. Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, Jul. 2023, doi: 10.37373/TEKNO.V10I2.419. DOI: https://doi.org/10.37373/tekno.v10i2.419

A. K. Rahardaya and I. Irwansyah, “Studi Literatur Penggunaan Media Sosial Tiktok Sebagai Sarana Literasi Digital Pada Masa Pandemi Covid-19,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 3, no. 2, pp. 308–319, Jul. 2021, doi: 10.47233/JTEKSIS.V3I2.248. DOI: https://doi.org/10.47233/jteksis.v3i2.248

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, pp. 115–123, Jul. 2020, doi: 10.33365/JTI.V14I2.679. DOI: https://doi.org/10.33365/jti.v14i2.679

D. H. Sunni, I. and Widyantoro, “Analisis Sentimen dan Ekstraksi Topik Penentu Sentimen pada Opini Terhadap Tokoh Publik,” Jurnal Sarjana Institut Teknologi Bandung Bidang Teknik Elektro dan Informatika, vol. 1, no. 2, pp. 200–206, 2016.

J. A. Zulqornain, I. Indriati, and P. P. Adikara, “Analisis Sentimen Tanggapan Masyarakat Aplikasi Tiktok Menggunakan Metode Naive Bayes dan Categorial Propotional Difference (CPD),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 7, pp. 2886–2890, Jun. 2021, Accessed: Feb. 21, 2025. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9396.

B. Gunawan, H. Sasty, P. #2, E. Esyudha, and P. #3, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 4, no. 2, pp. 113–118, Dec. 2018, doi: 10.26418/JP.V4I2.27526. DOI: https://doi.org/10.26418/jp.v4i2.27526

M. F. N. Fathoni, E. Y. Puspaningrum, and A. N. Sihananto, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Modem : Jurnal Informatika dan Sains Teknologi., vol. 2, no. 3, pp. 62–76, Jul. 2024, doi: 10.62951/MODEM.V2I3.112. DOI: https://doi.org/10.62951/modem.v2i3.112

N. Arifin, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 6, no. 2, pp. 129–136, Dec. 2021, doi: 10.30998/STRING.V6I2.10133. DOI: https://doi.org/10.30998/string.v6i2.10133

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” INSYST: Journal of Intelligent System and Computation, vol. 1, no. 1, pp. 43–49, Aug. 2019, doi: 10.52985/INSYST.V1I1.36. DOI: https://doi.org/10.52985/insyst.v1i1.36

A. C. Khotimah and E. Utami, “Comparison Naïve Bayes Classifier, K-nearest Neighbor and Support Vector Machine in the Classification of Individual on Twitter Account,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 3, pp. 673–680, Jun. 2022, doi: 10.20884/1.JUTIF.2022.3.3.254.

A. Y. Simanjuntak, I. S. S. Simatupang, and A. Anita, “Implementasi Data Mining Menggunakan Metode Naïve Bayes Classifier Untuk Data Kenaikan Pangkat Dinas Ketenagakerjaan Kota Medan,” Journal Of Science And Social Research, vol. 5, no. 1, pp. 85–91, Feb. 2022, doi: 10.54314/JSSR.V5I1.804. DOI: https://doi.org/10.54314/jssr.v5i1.804

A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 504–510, Jun. 2021, doi: 10.29207/RESTI.V5I3.3067. DOI: https://doi.org/10.29207/resti.v5i3.3067