Implementation of K-Means Clustering Method to Lecturers Based on Publications of National Journals and Accredited Sinta
Isi Artikel Utama
Abstrak
Lecturer research or scientific results published both nationally and with Sinta accreditation. This is done to determine the level of publication of lecturer research results that have been published so that they can be easily disseminated so that the knowledge gained influences knowledge in general and has an impact on people's lives. The problem in this research is how to apply the K-Means clustering method with reference to the results of lecturer research publications based on national journals and sinta accredited journals. In this study, the researchers used the K-Means method, which has the goal of minimizing the objective function that has been set in the clustering process and maximizing the variation of data in other clusters. So researchers will look for the best number of clusters in the K-means method. The discussion is carried out based on the data that has been collected in the form of national journal weights and sinta accredited journal weights by utilizing Matlab R2013b software. From the results of system testing, lecturer clustering was obtained related to the results of journal weights, namely lecturers with high national scores and no sinta accreditation weights, lecturers with quite high national weights and high sinta accreditation weights, moderate national weights and low sinta accreditation weights, low national weights and high weights with low Sinta accreditation. This study resulted in the conclusion that the data was processed through several stages, starting with calculating the weight value of each issue of the national journal and sinta accredited journal. Then the results of these weights are recapitulated based on each lecturer so that it can be seen the total value of the lecturers' weights in publishing research results in the form of journals that have been published both in the form of national publications and sinta publications.
Rincian Artikel
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Referensi
A. Alamsyah, A., & I.H. Muna, (2016). Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan dan Pustakawan. Scientific Journal of Informatics, 3(1), 88-98. DOI: https://doi.org/10.15294/sji.v3i1.6136
M. I. Artawan. (2002). Strategi Meningkatkan Mutu Pendidikan di Perguruan Tinggi. Fakultas Ekonomi Marwadewa, Bali
M.R. Asmawi, (2005). Strategi Meningkatkan Lulusan Bermutu di Perguruan Tinggi. Makara Sosial Humaniora, 66-71. DOI: https://doi.org/10.7454/mssh.v9i2.124
Dinas Kebudayaan. (2014). Pedoman Operasional Penilaian Angka Kredit Kenaikan Pangkat/Jabatan Akademik Dosen.
Direktorat Jenderal Pendidikan Tinggi. (2014). Pedoman Akreditasi Terbitlah Berkala ilmiah. Jakarta: Ditlitabmas.
A. Efferi, (2015). Manajemen Perguruan Tinggi dan Kinerja Dosen. Jurnal Fakultas Agama Islam, 3(1).
J. Han, M. Kamber, M & J. Pei, (2011). Data mining: concepts and techniques. Elsevier.
F.A. Hermawati, (2013). Data Mining. Yogyakarta: ANDI.
V. Kotu, & B. Deshpande, (2014). Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner. Morgan Kaufmann. DOI: https://doi.org/10.1016/B978-0-12-801460-8.00013-6
Lembaga Penelitian dan Pengabdian Kepada Masyarakat. (2016). Buku Data Penelitian dan Pengabdian Kepada Masyarakat 2015. Semarang: Universitas Negeri Semarang.
N.S. Rasid, & N. Ahmad, (2018). Grouping Students Academic Performance Using One-Way Clustering. Int. J. Sci. Commer, Hummanit, 2(3).
O.J. Oyelade, O.O. Oladipupo, & I.C. Obagbuwa, (2010). Application of k Means Clustering algorithm for prediction of Students Academic Performance. International Journal of Computer Science and Information Security. 7(1), 292-295.
J. Pal, & V. Bhattacherjee, (2015). Fuzzy Rule Based Classifier For Software Quality Data. Journal of Theoretical and Applied Information Technology, 72(1).
E. Prasetyo, (2014). Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta. Penerbit ANDI Yogyakarta, 218.
A. Safriyanto, (2010). Perancangan Aplikasi K-Means Untuk Pengelompokan Mahasiswa STMIK Elrahma Yogyakarta Berdasarkan Frekuensi Kunjungan Ke Perpustakaan Dan IPK. Jurnal Teknologi Informasi dan Ilmu Komputer (FAHMA).
M. Shovon, H.Islam, & M. Haque, (2012). An Approach of Improving Students Academic Performance by using k means clustering algorithm and Decision tree. International Journal of Advanced Computer Science and Application, 3(8), 146-149. DOI: https://doi.org/10.14569/IJACSA.2012.030824
A. Singla, & M. Karambir, (2012). Comparative Analysis & Evaluation of Euclidean Distance Function and Manhattan Distance Function Using K- Means Algorithm. International Journal of Advanced Research in Computer Science and Software Engineering (IJARSSE), 2(7), 298-300.
N. Soni, & A. Ganatra, (2012). Categorization of several Clustering algorithms from different perspective: a review. International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 63-68.
E. Sugiharti, & M.A. Muslim, (2016). On-line Clustering of Lecturers Performance of Computer Science Department of Semarang State University Using K-Means Algorithm. Journal of Theoretical and Applied Information Technology, 83(1).
A. Trisnaningsih, (2011). Faktor-Faktor Yang Mempengaruhi Kinerja Dosen Akuntansi. Jurnal Akuntansi dan Auditing, 8(1), 83-94.
B. Venkateswarlu, & P.G. Raju, (2013). Mine Blood Donors Information through Improved K-Means Clustering. International Journal of Computational Science and Information Technology, 1(3), 9-15 DOI: https://doi.org/10.5121/ijcsity.2013.1302