Implementation of ADABOOST Algorithm on C50 for Improving the Performance of Liver Disease Classification

Isi Artikel Utama

Anwar Sanusi
Chrystia Aji Putra
Fawwaz Ali Akbar

Abstrak

The liver is a vital organ that is important for humans because it plays a role in regulating hormone cycles, neutralizing toxins, and controlling the composition of blood. Liver disease is a common ailment worldwide. Often, this disease occurs without specific symptoms (asymptomatic). Therefore, liver disease is known as a "silent killer," and it is necessary to quickly and accurately diagnose and treat liver diseases. Data mining technology can be useful for rapidly detecting liver diseases from laboratory diagnosis results. One classification algorithm that can be used is the C50 algorithm. This algorithm is an improvement over the previous C45 algorithm, with several advantages such as efficient memory usage and more concise tree results. However, the C50 algorithm may experience overfitting on complex medical data, requiring the boosting process using AdaBoost. The AdaBoost algorithm can make the C50 algorithm more susceptible to overfitting. Another advantage of the AdaBoost algorithm is its ability to handle imbalanced datasets in terms of target labels. This research used 583 data from UCI machine learning with two target labels: liver and normal. The research results show that the C50 algorithm is capable of identification with an accuracy rate of 74.58%. Furthermore, the C50 algorithm's accuracy can be maximized by AdaBoost to reach 86.44%

Rincian Artikel

Cara Mengutip
Anwar Sanusi, Chrystia Aji Putra, & Fawwaz Ali Akbar. (2023). Implementation of ADABOOST Algorithm on C50 for Improving the Performance of Liver Disease Classification. JEECS (Journal of Electrical Engineering and Computer Sciences), 8(2), 93–102. https://doi.org/10.54732/jeecs.v8i2.1
Bagian
Articles

Referensi

I. Setiawati, A. Permana, A. Hermawan, (2019). “Implementasi Decision Tree Untuk Mendiagnosis Penyakit Liver,” Journal of Information System Management (JOISM), Vol. 1 No. 1, pp.13-17. DOI: https://doi.org/10.24076/JOISM.2019v1i1.17

B.V. Haekal, E. Patimah, D.S. Prasvita, (2021). Klasifikasi Penyakit Liver dengan Menggunakan Decision Tree, in Proceedings of Seminar Ilmiah Nasional Online Mahasiswa Ilmu Komputer dan Aplikasinya, Vol. 2, No. 1, pp.655-659.

E. Pusporani, S. Qomariyah, and I. Irhamah, (2019). “Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning,” INFERENSI, vol. 2, no. 1, pp.25-32. DOI: https://doi.org/10.12962/j27213862.v2i1.6810

A. C. Wijaya, N. A. Hasibuan, and P. Ramadhani, (2018). “Implementasi Algoritma C5.0 Dalam Klasifikasi Pendapatan Masyarakat (Studi Kasus: Kelurahan Mesjid Kecamatan Medan Kota),” Jurnal Informasi dan Teknologi Ilmiah (INTI), vol. 5, no. 3, pp.262-268.

N. Novianti, M. Zarlis, and P. Sihombing, (2022). “Penerapan Algoritma Adaboost Untuk Peningkatan

Kinerja Klasifikasi Data Mining Pada Imbalance Dataset Diabetes,” Jurnal Media Informatika Budidarma,

vol. 6, no. 2, pp. 1200-1206, doi: 10.30865/mib.v6i2.4017. DOI: https://doi.org/10.30865/mib.v6i2.4017

W. Wahyudi, (2021).“Implementasi Data Mining Untuk Klasifikasi Penyakit Liver Dengan C4.5 Adaboost,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, Vol. 1, No.3. doi: https://doi.org/10.55606/juitik.v1i3.120. DOI: https://doi.org/10.55606/juitik.v1i3.120

M. Nurkholifah, J. Jasmarizal, Y. Umar, and R. Rahmaddeni, (2023). “Analisa Performa Algoritma Machine Learning Dalam Prediksi Penyakit Liver,” Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 4, no. 1, pp. 164–172, doi: 10.35870/jimik.v4i1.149. DOI: https://doi.org/10.35870/jimik.v4i1.149

M. Qois Syafi, A. Alamsyah, (2022). “Increasing Accuracy of Heart Disease Classification on C4.5

Algorithm Based on Information Gain Ratio and Particle Swarm Optimization Using Adaboost Ensemble,” Journal of Advances in Information Systems and Technology, vol. 4, no. 1.

K. Idris and S. Bhoite, (2019). “Applications of Machine Learning for Prediction of Liver Disease,”. [Online]. Available: https://towardsdatascience.com/understanding- DOI: https://doi.org/10.7753/IJCATR0809.1012

R. R. Putra and C. Wadisman, (2018). “Implementasi Data Mining Pemilihan Pelanggan Potensial

Menggunakan Algoritma K Means,” INTECOMS: Journal of Information Technology and Computer Science, vol. 1, no. 1, pp. 72–77, doi: 10.31539/intecoms.v1i1.141. DOI: https://doi.org/10.31539/intecoms.v1i1.141

P. B. N. Setio, D. R. S. Saputro, and B. Winarno, (2020). “Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” vol. 3, pp. 64–71, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

C. Anam and H. B. Santoso, (2018). “Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes untuk

Klasifikasi Penerima Beasiswa,” Energy, vol. 8, no. 1, pp.13-19.

M. Fajri, I. T. Utami, and Muh. Maruf, (2022). “Comparison of C4.5 and C5.0 Algorithm Classification Tree Models for Analysis of Factors Affecting Auction,” Indonesian Journal of Statistics and Its Applications, vol. 6, no. 1, pp. 13–22, doi: 10.29244/ijsa.v6i1p13-22. DOI: https://doi.org/10.29244/ijsa.v6i1p13-22

Annah and Hasriani, (2019). “Klasifikasi Warga Penerima Bantuan Stimulan Perumahan Swadaya

Menggunakan Metode ADABOOST,” in Proceedins of Seminar Ilmiah Sistem Informasi Dan Teknologi

Informasi, vol. 8, no.1, pp.169-180.

D. Normawati and S. A. Prayogi, (2021). “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp.697-711.

M. Abdar, M. Zomorodi-Moghadam, R. Das, and I. H. Ting, (2017). “Performance analysis of classification algorithms on early detection of liver disease,” Expert Systems with Applications, vol. 67, pp. 239–251, doi: 10.1016/j.eswa.2016.08.065. DOI: https://doi.org/10.1016/j.eswa.2016.08.065